精英家教网 > 初中数学 > 题目详情
如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F.

【小题1】求证:EF是⊙O的切线
【小题2】求DE的长
p;【答案】
【小题1】证明:∵AB是⊙O的直径,
∴∠ACB=90°.         ……… 1分
∵四边形OBCD是菱形,
∴OD//BC.
∴∠1=∠ACB=90°.    ……… 2分
∵EF∥AC,
∴∠2=∠1 =90°.      ……… 3分
∵OD是半径,
∴EF是⊙O的切线.     ……… 4分
【小题2】解:连结OC,
 
∵直径AB=4,∴半径OB=OC=2.
∵四边形OBCD是菱形,∴OD=BC=OB=OC=2.
∴∠B=60°.                                         ……… 7分
∵OD//BC,∴∠EOD=∠B= 60°.                      ……… 8分
在Rt△EOD中,DE=OD•tan∠EOD=2 tan60°=2.     ……… 9分解析:
p;【解析】略
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O的直径AB与弦CD相交于E,
BC
=
BD
,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=
3
4
,求线段AD、CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径AB与弦CD(不是直径)相交于E,E是CD的中点,过点B作BF∥CD交AD的延长线于
点F.
(1)求证:BF是⊙O的切线;
(2)连接BC,若⊙O的半径为5,∠BCD=38°,求线段BF、BC的长.(精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB,CD互相垂直,P为  上任意一点,连PC,PA,PD,PB,下列结论:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•柳州)如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=
92

(1)求OD、OC的长;
(2)求证:△DOC∽△OBC;
(3)求证:CD是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是
4
3
cm
4
3
cm

查看答案和解析>>

同步练习册答案