精英家教网 > 初中数学 > 题目详情
18、如图,已知直线AB∥CD,∠DCF=110°,且AE=AF,求∠A的度数.
分析:根据两直线平行同位角相等可得∠EFB=∠DCF=110°,再根据补角的定义可求得∠AFE的度数,由等边对等角可得∠E=∠AFE,由三角形内角和定理不难求得∠A的度数.
解答:解:∵AB∥CD,
∴∠EFB=∠DCF=110°(2分)
∴∠AFE=70°(1分)
∵AE=AF,
∴∠E=∠AFE=70°(2分).
∴∠A=180°-70°-70°=40°.
点评:此题主要考查学生对平行线的性质,补角的定义及三角形内角和定理的综合运用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于
35
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,已知直线AB、CD相交于点O,OE平分∠BOC,如果∠BOE=50°,那么∠AOC=
80
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线AB和CD相交于O点,∠DOE是直角,OF平分∠AOE,∠BOD=22°,求∠COF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB∥CD,∠A=∠C=100°,E、F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.
(1)直线AD与BC有何位置关系?请说明理由.
(2)求∠DBE的度数.
(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB∥CD,EM⊥FM,∠MFD=25°,求∠MEB的度数.

查看答案和解析>>

同步练习册答案