分析 (1)根据题意可以求得w关于n的函数关系式,由所购买的A种笔记本的数量多于B种笔记本数量,但又不多于B种笔记本数量2倍,可以确定n的取值范围;
(2)根据(1)中的函数关系式可以求得w的最小值及此时购买的A和B种两种笔记本的数量.
解答 解:(1)由题意可得,
w=12n+8(30-n)=4n+240,
∵$\left\{\begin{array}{l}{n>30-n}\\{n≤2(30-n)}\end{array}\right.$,
解得,15<n≤20,
即w(元)关于n(本)的函数关系式是w=4n+240(15<n≤20);
(2)∵w=4n+240(15<n≤20),n为正整数,
∴n=16时,w取得最小值,此时w=4×16+240=304,
∴30-n=30-16=14,
即购买A种笔记本16本、B种笔记本14本时,花费最少,此时的花费是304元.
点评 本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com