精英家教网 > 初中数学 > 题目详情
9、对于一元二次方程ax2+bx+c=0,下列说法:①若b=a+c,则方程必有一根为x=-1;②若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;③若b2>4ac,则方程ax2+bx+c=0一定有两个不相等实数根;其中正确结论有(  )个.
分析:①首先把b=a+c变为a-b+c=0,当x=-1时,ax2+bx+c=a-b+c,由此即可判定说法正确;
②由于c是方程ax2+bx+c=0的一个根,把c代入方程即可得到ac2+bc+c=0,而c的值不确定,由此即可判定是否正确;
③由于b2>4ac,则b2-4ac>0,根据判别式与根的情况即可判定方程ax2+bx+c=0是否有两个不相等实数根.
解答:解:①∵b=a+c,
∴a-b+c=0,
∴当x=-1时,ax2+bx+c=a-b+c=0,
∴x=-1为方程ax2+bx+c=0的一根;
②∵c是方程ax2+bx+c=0的一个根,
∴把c代入方程即可得到ac2+bc+c=0,
而c没有确定是否等于0,
∴ac+b+1=0不一定成立;
③∵b2>4ac,
∴b2-4ac>0,
则方程ax2+bx+c=0一定有两个不相等实数根.
所以正确的结论有①③.
故选C.
点评:此题主要考查了一元二次方程的判别式和方程的解,其中①只要把x=-1代入方程结合已知条件即可判定;②主要利用c的值不一定不等于0解决问题;③利用判别式即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源:三点一测丛书 九年级数学 上 (江苏版课标本) 江苏版课标本 题型:044

有一根为1的一元二次方程

对于关于x的一元二次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的两个根分别为x1=1,x2.说明如下:

由于a+b+c=0,则c=-a-b

将c=-a-b代入原方程,得ax2+bx-a-b=0.

即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0

解得x1=1,x2

请利用上面推导出来的结论,快速求解下列方程:

(1)3x2-5x+2=0,x1=________,x2=________;

(2)7x2-4x-3=0,x1=________,x2=________;

(3)13x2+7x-20=0,x1=________,x2=________;

(4)x2-(+1)x+=0,x1=________,x2=________;

(5)2004x2-2003x-1=0,x1=________,x2=________;

(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),x1=________,x2=________;

(7)请你写出3个一元二次方程,使它们都有一个根是1.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书九年级数学上 题型:022

有一根为1的一元二次方程

  对于关于x的一元一次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的两个根分别为x1=1,x2.说明如下:

  由于a+b+c=0,则c=-a-b

  将c=-a-b代入原方程,得ax2+bx-a-b=0.

  即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0

  解得x1=1,x2

请利用上面推导出来的结论,快速求解下列方程:

(1)3x2-5x+2=0,       (2)7x2-4x-3=0,

x1=________,x2=________;  x1=________,x2=________;

(3)13x2+7x-20=0,      (4)x2-(+1)x+=0,

x1=________,x2=________;  x1=________,x2=________;

(5)2004x2-2003x2-1=0,x1=________;x2=________;

(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),

x1=________,x2=________.

(7)请你写出3个一元二次方程,使它们都有一个根是1.

查看答案和解析>>

同步练习册答案