精英家教网 > 初中数学 > 题目详情

【题目】某校七年级开展了为期一周的敬老爱亲社会活动,并根据学生做家务的时间来评价他们在活动中的表现,学校随机抽查了部分学生在这次活动中做家务的时间,并绘制了如下的频数分布表和频数分布直方图.请根据图表中提供的信息,解答下列问题:

等级

做家务时间(小时)

频数

百分比

A

0.5≤x1

3

6%

B

1x1.5

a

30%

C

1.5≤x2

20

40%

D

2≤x2.5

b

m

E

2.5≤x3

2

4%

1)这次活动中抽查的学生有______人,表中a=______b=______m=______,并补全频数分布直方图;

2)若该校七年级有700名学生,请估计这所学校七年级学生一周做家务时间不足2小时而又不低于1小时的大约有多少人?

【答案】(1)50151020%;(2)大约有490

【解析】

1)根据第一组的频数是3,百分比是6%,求得数据总数,再用数据总数乘以第二百分比率可得a的值,再用总人数-各个组人数可得b,根据百分率之和为1,求出m即可;

2)利用总数700乘以做家务时间不足2小时而又不低于1小时的所占的百分比即可.

1)总人数=3÷6%=50(人),a=50×30%=15b=50-3-15-20-2=10m=1-6%-30%-40%-4%=20%

故答案为:50151020%

2700×70%=490(人),

∴该校七年级有700名学生,请估计这所学校七年级学生一周做家务时间不足2小时而又不低于1小时的大约有490

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,点P的坐标为(m,n),则向量可以用点P的坐标表示为=(m,n);已知=(x1,y1),=(x2,y2),若x1x2+y1y2=0,则互相垂直.

下面四组向量:①=(3,﹣9),=(1,﹣);

=(2,π0),=(21,﹣1);

=(cos30°,tan45°),=(sin30°,tan45°);

=(+2,),=(﹣2,).

其中互相垂直的组有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

已知:如图1,等边A1A2A3内接于⊙O,点P上的任意一点,连接PA1,PA2,PA3,可证:PA1+PA2=PA3,从而得到:是定值.

(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;

证明:如图1,作∠PA1M=60°,A1MA2P的延长线于点M.

∵△A1A2A3是等边三角形,

∴∠A3A1A2=60°,

∴∠A3A1P=A2A1M

A3A1=A2A1A1A3P=A1A2P,

∴△A1A3P≌△A1A2M

PA3=MA2=PA2+PM=PA2+PA1

,是定值.

(2)延伸:如图2,把(1)中条件等边A1A2A3改为正方形A1A2A3A4”,其余条件不变,请问:还是定值吗?为什么?

(3)拓展:如图3,把(1)中条件等边A1A2A3改为正五边形A1A2A3A4A5”,其余条件不变,则=  (只写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, BD ABC 的角平分线, AE BD ,垂足为 F ,若∠ABC35°,∠ C50°,则∠CDE 的度数为(

A.35°B.40°C.45°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.

(1)农民自带的零钱是多少?

(2)试求降价前yx之间的关系式

(3)由表达式你能求出降价前每千克的土豆价格是多少?

(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)26,试问他一共带了多少千克土豆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°AC=BCEBC边上的一点,连接AE,过CCFAE,垂足为F,过BBDBCCF的延长线于D

1)求证:△ACE≌△CBD

2)若BE=3AB=6,求点EAB的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在五边形 ABCDE中,ABACADAE,且AB//ED,∠EAB120°,则∠DCB的度数是( )

A. 120°B. 130°C. 140°D. 150°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.

(1)求每台型、型净水器的进价各是多少元;

(2)槐荫公司计划购进两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.

已知是比例三角形,,请直接写出所有满足条件的AC的长;

如图1,在四边形ABCD中,,对角线BD平分求证:是比例三角形.

如图2,在的条件下,当时,求的值.

查看答案和解析>>

同步练习册答案