【题目】如图,在△ABC中,BC=5,高AD、BE相交于点O,BD=CD,且AE=BE.
(1)求线段AO的长;
(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,△POQ的面积为S,请用含t的式子表示S,并直接写出相应的t的取值范围;
(3)在(2)的条件下,点F是直线AC上的一点且CF=BO.是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请直接写出符合条件的t值;若不存在,请说明理由.
【答案】(1)AO=BC=5;(2)①S=﹣2t2+t(0<t<);②S=2t2﹣t(<t≤5);(3)存在;t=1或s.
【解析】
(1)只要证明△AOE≌△BCE即可解决问题;
(2)分两种情形讨论求解即可①当点Q在线段BD上时,QD=2﹣4t,②当点Q在射线DC上时,DQ=4t﹣2时;
(3)分两种情形求解即可①如图2中,当OP=CQ时,BOP≌△FCQ.②如图3中,当OP=CQ时,△BOP≌△FCQ.
解:(1)如图1中,
∵AD是高,
∴∠ADC=90°,
∵BE是高,
∴∠AEB=∠BEC=90°,
∴∠EAO+∠ACD=90°,∠EBC+∠ECB=90°,
∴∠EAO=∠EBC,
在△AOE和△BCE中,
,
∴△AOE≌△BCE,
∴AO=BC=5.
(2)∵BD=CD,BC=5,
∴BD=2,CD=3,
由题意OP=t,BQ=4t,
①当点Q在线段BD上时,QD=2﹣4t,
∴S=t(2﹣4t)=﹣2t2+t(0<t<).
②当点Q在射线DC上时,DQ=4t﹣2,
∴S=t(4t﹣2)=2t2﹣t(<t≤5).
(3)存在.
①如图2中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.
∴CQ=OP,
∴5﹣4t═t,
解得t=1,
②如图3中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,
∴△BOP≌△FCQ.
∴CQ=OP,
∴4t﹣5=t,
解得t=.
综上所述,t=1或s时,△BOP与△FCQ全等.
科目:初中数学 来源: 题型:
【题目】某商店销售两种商品,每件的售价分别为元、元,五一期间,该商店决定对这两种商品进行促销活动,如图所示,若小红打算到该商店购买件商品和件商品,根据以上信息,请:
(1)分别用含的代数式表示按照方案一和方案二所需的费用和;
(2)就的不同取值,请说明选择那种方案购买更实惠(两种优惠方案不能同时享受)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1, ⊙O是等边三角形 的外接圆, 是⊙O上的一个点.
(1)则 =;
(2)试证明: ;
(3)如图2,过点 作⊙O的切线交射线 于点 .
①试证明: ;
②若 ,求 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,海中有一灯塔P,它的周围8海里内有暗礁.海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).
请根据上面两个不完整的统计图回答以下4个问题:
(1)这次抽样调查中,共调查了_____名学生.
(2)补全条形统计图中的缺项.
(3)在扇形统计图中,选择教师传授的占_____%,选择小组合作学习的占_____%.
(4)根据调查结果,估算该校1800名学生中大约有_____人选择小组合作学习模式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.若AC=6,AB=10,则⊙O的半径为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)﹣+|﹣3|
(2)x2x4﹣(﹣3x2)3
(3)(m+1)(m﹣3)﹣(m+2)2+(m+2)(m﹣2)
(4)20142﹣2013×2015(用公式计算)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线 与抛物线 交于A、B两点,点A在x轴上,点B的横坐标为-8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为 ,点P的横坐标为 ,求 关于 的函数关系式,并求出 的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在 轴上时,求出对应点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠B=90°,点P从点A出发,沿A→B→C以1cm/s的速度运动.设△APC的面积为s(m),点P的运动时间为t(s),变量S与t之间的关系如图2所示,则在运动过程中,S的最大值是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com