精英家教网 > 初中数学 > 题目详情
如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足为B、D,且AD与BC相交于E点.已知:A(-2,-6),C(1,-3)
(1)求证:E点在y轴上;
(2)如果AB的位置不变,而DC水平向右移动K(K>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于K的函数解析式;
(3)过A、E、E′三点的抛物线中,是否存在一条抛物线,它的顶点在x轴上?若存在,请求出k的值;若不存在,说明理由.
(1)证明:根据题意得:B(-2,0),点D(1,0),
设直线AD的解析式为:y=kx+b,
-2k+b=-6
k+b=0

解得:
k=2
b=-2

∴直线AD的解析式为:y=2x-2,
同理可得:直线BC的解析式为:y=-x-2,
∵2x-2=-x-2,
解得:x=0,y=-2,
∴AD与BC的交点E的坐标为(0,-2);
∴E点在y轴上;

(2)由(1)当DC水平向右平移k后,过AD与BC的交点E′作E′F⊥x轴垂足为F.
同(1)可得:
E′F
AB
+
E′F
DC
=1,得:E′F=2,
∵BADC,
∴S△BCA=S△BDA
∴S△AE′C=S△BDE′=
1
2
BD•E′F=
1
2
(3+k)×2=3+k,
∴S=3+k为所求函数解析式.

(3)存在.
设抛物线的方程y=ax2+bx+c(a≠0)过A(-2,-6),C(1,-3),E(0,-2)三点,
得方程组
4a-2b+c=-6
a+b+c=-3
c=-2

解得a=-1,b=0,c=-2,
∴抛物线方程y=-x2-2
(注:题目未告之E(0,-2)是抛物线的顶点)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点A为y轴正半轴上一点,A,B两点关于x轴对称,过点A任作直线交抛物线y=
2
3
x2
于P,Q两点.
(1)求证:∠ABP=∠ABQ;
(2)若点A的坐标为(0,1),且∠PBQ=60°,试求所有满足条件的直线PQ的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,OA=OC,AB=4,tan∠BCO=
1
5
,二次函数y=ax2+bx+c图象经过A、B、C三点.
(1)求A,B,C三点的坐标;
(2)求二次函数的解析式;
(3)求过点A、B和抛物线顶点D的圆的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=-
1
2
x2+bx+c的图象经过点A(-3,-6),并与x轴交于点B(-1,0)和点C,顶点为P.
(1)求二次函数的解析式;
(2)设点M为线段OC上一点,且∠MPC=∠BAC,求点M的坐标;
说明:若(2)你经历反复探索没有获得解题思路,请你在不改变点M的位置的情况下添加一个条件解答此题,此时(2)最高得分为3分.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,以点0′(-2,-3)为圆心,5为半径的圆交x轴于A、B两点,过点B作⊙O′的切线,交y轴于点C,过点0′作x轴的垂线MN,垂足为D,一条抛物线(对称轴与y轴平行)经过A、B两点,且顶点在直线BC上.
(1)求直线BC的解析式;
(2)求抛物线的解析式;
(3)设抛物线与y轴交于点P,在抛物线上是否存在一点Q,使四边形DBPQ为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形OABC中,ABOC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B的坐标为(2,2
3
),∠BCO=60°,OH⊥BC,垂足为H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为ts.
(1)求OH的长;
(2)若△OPQ的面积为S(平方单位),求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,半径为1的动圆P圆心在抛物线y=(x-2)2-1上,当⊙P与x轴相切时,点P的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

明珠大剧场座落在聊城东昌湖西岸,其上部为能够旋转的拱形钢结构,并且具有开启、闭合功能,全国独-无二,如图1.舞台顶部横剖面拱形可近似看作抛物线的一部分,其中舞台高度1.15米,台口高度13.5米,台口宽度29米,如图2.以ED所在直线为x轴,过拱顶A点且垂直于ED的直线为y轴,建立平面直角坐标系.
(1)求拱形抛物线的函数关系式;
(2)舞台大幕悬挂在长度为20米的横梁MN上,其下沿恰与舞台面接触,求大幕的高度?(精确到0.01米)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用长为100cm的铁丝做一个矩形框子.
(1)能做成矩形框的面积为800cm2吗?如果能求出长和宽,如果不能请说明理由.
(2)请说明能围成的矩形最大面积是多少?为什么?

查看答案和解析>>

同步练习册答案