精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于⊙O,∠BAC=60°,点D是的中点.BC,AB边上的高AE,CF相交于点H.试证明:
(1)∠FAH=∠CAO;
(2)四边形AHDO是菱形.

【答案】分析:(1)连接AD,由于点D是的中点,根据圆周角定理知∠BAD=∠CAD,由垂径定理知,OD⊥BC根据垂直于同一条直线的两条直线平行知AE∥OD,由两直线平行,内错角相等知∠DAE=∠ODA,由等边对等角知∠DAO=∠ODA,∴∠BAD-∠DAH=∠CAD-∠DAO,∴∠FAH=∠CAO;
(2)过点O作OM⊥AC于M,由垂径定理知,AC=2AM,由于CF⊥AB∠BAC=60°∴AC=AF÷cos60°=2AF
∴AF=AM在△AFH与△AMO中有∠FAH=∠CAO  AF=AM∠AFH=∠AMO,∴△AFH≌△AMO,∴AH=OA=OD,∴AH平行且等于OD,∴四边形AHDO为菱形.
解答:证明:(1)连接AD,
∵点D是的中点,
∴∠BAD=∠CAD,OD⊥BC,
∵AE⊥BC,
∴AE∥OD,
∴∠DAH=∠ODA,
∵OA=OD,
∴∠DAO=∠ODA,
∴∠BAD-∠DAH=∠CAD-∠DAO,
∴∠FAH=∠CAO;

(2)过点O作OM⊥AC于M,
∴AC=2AM,
∵CF⊥AB,∠BAC=60°,
∴AC=2AF,
∴AF=AM,
在△AFH与△AMO中,
∵∠FAH=∠CAO,AF=AM,∠AFH=∠AMO,
∴△AFH≌△AMO,
∴AH=OA,
∵OA=OD,
∴AH平行且等于OD.
∴四边形AHDO是平行四边形(一组对边平行且相等的四边形是平行四边形),
又∵OA=OD,
∴平行四边形AHDO是菱形(临边相等的平行四边形是菱形)
点评:本题利用了圆周角定理,垂径定理,平行线的判定和性质,等边对等角,全等三角形的判定和性质,菱形的判定求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案