精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).

(1)求抛物线的函数解析式,并写出顶点D的坐标;

(2)如图1,过点PPEy轴于点E.求PAE面积S的最大值;

(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.

【答案】(1)抛物线的解析式为y=﹣x2﹣2x+3,顶点D的坐标为(﹣1,4);(2)PAE面积S的最大值是;(3)点Q的坐标为(﹣2+,2﹣4).

【解析】

(1)根据抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,可以求得该抛物线的解析式,然后将函数解析式化为顶点式,从而可以得到该抛物线的顶点坐标,即点D的坐标;

(2)根据题意和点A和点D的坐标可以得到直线AD的函数解析式,从而可以设出点P的坐标,然后根据图形可以得到APE的面积,然后根据二次函数的性质即可得到PAE面积S的最大值;

(3)根据题意可知存在点Q使得四边形OAPQ为平行四边形,然后根据函数解析式和平行四边形的性质可以求得点Q的坐标.

解:(1)∵抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,

,得

∴抛物线解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,

∴抛物线的顶点坐标为(﹣1,4),

即该抛物线的解析式为y=﹣x2﹣2x+3,顶点D的坐标为(﹣1,4);

(2)设直线AD的函数解析式为y=kx+m,

,得

∴直线AD的函数解析式为y=2x+6,

∵点P是线段AD上一个动点(不与A、D重合),

∴设点P的坐标为(p,2p+6),

SPAE=﹣(p+2+

﹣3<p<﹣1,

∴当p=﹣时,SPAE取得最大值,此时SPAE

PAE面积S的最大值是

(3)抛物线上存在一点Q,使得四边形OAPQ为平行四边形,

∵四边形OAPQ为平行四边形,点Q在抛物线上,

OA=PQ,

∵点A(﹣3,0),

OA=3,

PQ=3,

∵直线ADy=2x+6,点P在线段AD上,点Q在抛物线y=﹣x2﹣2x+3上,

∴设点P的坐标为(p,2p+6),点Q(q,﹣q2﹣2q+3),

解得,(舍去),

q=﹣2+时,﹣q2﹣2q+3=2﹣4,

即点Q的坐标为(﹣2+,2﹣4).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.

(1)求BCD的度数.

(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°0.36,tan18°0.32)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数yk0)图象交于AB两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣23).

1)求一次函数和反比例函数解析式.

2)若将点C沿y轴向下平移4个单位长度至点F,连接AFBF,求△ABF的面积.

3)根据图象,直接写出不等式﹣x+b的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,已知折痕与边BC交于点O,连结AP、OP、OA.

(1)求证:OCP∽△PDA;

(2)若OCPPDA的面积比为1:4,求边AB的长;

(3)如图2,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MNPB于点F,作MEBP于点E.探究:当点M、N在移动过程中,线段EF与线段PB有何数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将半径为4,圆心角为90°的扇形BACA点逆时针旋转60°,点BC的对应点分别为点DE且点D刚好在上,则阴影部分的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有一面12米长的墙,某农户计划用28米长的篱笆靠墙围成一个矩形养鸡场ABCD(篱笆只围ABBCCD三边),其示意图如图所示.

(1)若矩形养鸡场的面积为92平方米,求所用的墙长AD.(结果精确到0.1米)(参考数据=1.41,=1.73,=2.24)

(2)求此矩形养鸡场的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.

(1)求函数y=y=kx+b的解析式;

(2)已知直线ABx轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得SPOC=9.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形OABC与矩形ODEF是位似图形,P是位似中心,若点B的坐标为,点E的坐标为,则点P的坐标为______

查看答案和解析>>

同步练习册答案