分析 (1)根据等边三角形的性质,得到四边形ABCD是菱形,从而再根据菱形是中心对称图形,得到旋转中心有B点、C点、BC的中点;
(2)根据平移的性质,得到BB1=CC1,根据等边三角形的性质,得到AC=B1D1,∠BB1D1=∠ACC1,从而得到△BB1D1≌△ACC1,则AB=C1D1,再根据两组对边分别平行的四边形是平行四边形即可证明;
(3)根据等边三角形的性质得出AD=BD=DD1,∠ADB=60°,进而得出∠BAD=90°,再利用矩形的判定得出即可.
解答 解:(1)∵等边△ABC和等边△DBC有公共的底边BC,
∴AB=BC=CD=AD,
∴四边形ABCD是菱形.
∴要旋转△DBC,使△DBC与△ABC重合,有三点分别为:B点、C点、BC的中点,
故答案为:B点、C点、BC的中点;
(2)四边形ABD1C1是平行四边形.理由如下:
根据平移的性质,得到BB1=CC1,
根据等边三角形的性质,得到AC=B1D1,∠BB1D1=∠ACC1,
∴△BB1D1≌△ACC1,
∴AC1=BD1,
又AB=C1D1,
∴四边形ABD1C1是平行四边形;
(3)当移动距离BB1=2时,四边形ABC1D1是矩形.
理由:连接BC1,AD1,
∵△ABD,△BDC都是边长为2的等边三角形,
∴AD=BD=DD1,∠ADB=60°,
∴∠DAD1=∠DD1A=30°,
∴∠BAD=60°+30°=90°,
∵由(2)可得出四边形ABC1D1是平行四边形,
∴平行四边形ABC1D1是矩形.
点评 此题主要考查了矩形的判定和等边三角形的性质和平行四边形的判定以及旋转的性质,熟练掌握相关的定理是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com