精英家教网 > 初中数学 > 题目详情
6.计算
(1)($\sqrt{80}$+$\sqrt{20}$)÷$\sqrt{5}$
(2)($\sqrt{3}$+1)($\sqrt{3}$-1)+(-2)0-$\root{3}{27}$
(3)根式$\root{a-b}{2a}$与$\sqrt{a+3}$是可以合并的最简二次根式,则b-a的值为多少?

分析 (1)首先化简二次根式进而利用二次根式混合运算法则求出答案;
(2)直接利用乘法公式以及零指数幂的性质和立方根的性质化简求出答案;
(3)直接利用同类二次根式的性质得出关于a,b的等式求出答案.

解答 解:(1)($\sqrt{80}$+$\sqrt{20}$)÷$\sqrt{5}$
=(4$\sqrt{5}$+2$\sqrt{5}$)÷$\sqrt{5}$
=6$\sqrt{5}$÷$\sqrt{5}$
=6;

(2)($\sqrt{3}$+1)($\sqrt{3}$-1)+(-2)0-$\root{3}{27}$
=3-1+1-3
=0;

(3)∵根式$\root{a-b}{2a}$与$\sqrt{a+3}$是可以合并的最简二次根式,
∴$\left\{\begin{array}{l}{a-b=2}\\{2a=a+3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=3}\\{b=1}\end{array}\right.$,
则b-a=1-3=-2.

点评 此题主要考查了同类二次根式以及实数运算和最简二次根式等知识,正确掌握相关运算性质是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=6,b=4时的绿化面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.九年级七班“数学兴趣小组”对函数的对称变换进行探究,以下是探究发现运用过程,请补充完整.
(1)操作发现,在作函数y=|x|的图象时,采用了分段函数的办法,该函数转化为y=$\left\{\begin{array}{l}{x}&{x≥0}\\{-x}&{x<0}\end{array}\right.$,请在如图1所示的平面直角坐标系中作出函数的图象;
(2)类比探究
作函数y=|x-1|的图象,可以转化为分段函数$y=\left\{\begin{array}{l}{x-1(x≥1)}\\{-x+1(x<1)}\end{array}\right.$,然后分别作出两段函数的图象.聪明的小昕,利用坐标平面上的轴对称知识,把函数y=x-1在x轴下面部分,沿x轴进行翻折,与x轴上及上面部分组成了函数y=|x-1|的图象,如图2左图所示;
(3)拓展提高
如图2右图是函数y=x2-2x-3的图象,请在原坐标系作函数y=|x2-2x-3|的图象;
(4)实际运用
1)函数y=|x2-2x-3|的图象与x轴有2个交点,对应方程|x2-2x-3|=0有2个实根;
2)函数y=|x2-2x-3|的图象与直线y=5有2个交点,对应方程|x2-2x-3|=5有2个实根;
3)函数y=|x2-2x-3|的图象与直线y=4有3个交点,对应方程|x2-2x-3|=4有3个实根;
4)关于x的方程|x2-2x-3|=a有4个实根时,a的取值范围是0<a<4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.
如图是源于该报告中的中国共享经济重点领域市场规模统计图:

(1)请根据统计图解答下列问题:
①图中涉及的七个重点领域中,2016年交易额的中位数是2038亿元.
②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.
(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)$\sqrt{8}-(\frac{1}{2})^{-1}+|2\sqrt{2}-4|$                                   
(2)0.25×$(\frac{1}{2})^{-2}+(\sqrt{7}-\sqrt{2005})^{0}$
(3)($\frac{1}{6}$)${\;}^{-1}-201{5}^{0}+|-2\sqrt{5}|-\sqrt{20}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)计算:$\root{3}{8}$-(π-2)0-|1-$\sqrt{2}$|+($\frac{1}{2}$)-2
(2)化简:(x+2y)2-(x+y)(x-y)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,矩形ABCD中,AB=4,BC=2,点O在AB的延长线上,OB=2$\sqrt{3}$,∠AOE=60°.动点P从点O出发,以每秒2个单位的速度沿射线OE方向运动,以P为圆心,OP为半径做⊙P.同时点Q从点B出发,以每秒1个单位的速度沿折线B-C-D向点D运动,Q与D重合时,P、Q同时停止运动.设P的运动时间为t秒.
(1)∠BOC=30°,PA的最小值是2$\sqrt{3}$+3;
(2)当⊙P过点C时,求⊙P与线段OA围成的封闭图形的面积;
(3)当⊙P与矩形ABCD的边所在直线相切时,求t的值;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.问题背景:如图(1),在△ABC中,已知AB=AC,BE=CF.
(1)发现问题:小华审题后发现,若连接CE,BF,则CE=BF,请说明理由;
(2)提出问题:如图(2),设CE与BF交于点O,则直线AO是BC边的垂直平分线吗?试说明理由;
(3)解决问题:在图(3)中,是各边相等,各内角也相等的正五边形ABCDE,请你只用无刻度的直尺画出图中BC边的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列各式成立的是(  )
A.$\sqrt{{{({-2})}^2}}=-2$B.$\sqrt{{{({-3})}^2}}=9$C.$\sqrt{x^2}=x$D.$\sqrt{{{({-5})}^2}}=5$

查看答案和解析>>

同步练习册答案