精英家教网 > 初中数学 > 题目详情
2.某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
“读书节”活动计划书
 书本类别 A类 B类
 进价(单位:元) 18 12
 备注 1、用不超过16800元购进A、B两类图书共1000本;
2、A类图书不少于600本;
(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;
(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?

分析 (1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.
(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.

解答 解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,
根据题意可得$\frac{540}{x}$-10=$\frac{540}{1.5x}$,
化简得:540-10x=360,
解得:x=18,
经检验:x=18是原分式方程的解,且符合题意,
则A类图书的标价为:1.5x=1.5×18=27(元),
答:A类图书的标价为27元,B类图书的标价为18元;

(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),
由题意得,$\left\{\begin{array}{l}{18t+12(1000-t)≤16800}\\{t≥600}\end{array}\right.$,
解得:600≤t≤800,
则总利润w=(27-a-18)t+(18-12)(1000-t)
=(9-a)t+6(1000-t)
=6000+(3-a)t,
故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;
当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;
当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;
答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.

点评 本题考查了一次函数的应用,涉及了分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.在△ABC中,P为边AB上一点.
(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;
(2)若M为CP的中点,AC=2.
①如图2,若∠PBM=∠ACP,AB=3,求BP的长;
②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在平面直角坐标系中,已知抛物线y=x2+bx+c的顶点M的坐标为(-1,-4),且与x轴交于点A,点B(点A在点B的左边),与y轴交于点C.
(1)填空:b=2,c=-3,直线AC的解析式为y=-x-3;
(2)直线x=t与x轴相交于点H.
①当t=-3时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若∠COD=∠MAN,求出此时点D的坐标;
②当-3<t<-1时(如图2),直线x=t与线段AC,AM和抛物线分别相交于点E,F,P.试证明线段HE,EF,FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为$\frac{3}{5}$,求此时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=35°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如果a+b=2,那么代数(a-$\frac{{b}^{2}}{a}$)•$\frac{a}{a-b}$的值是(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.(x2y)3的结果是(  )
A.x5y3B.x6yC.3x2yD.x6y3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先化简(a+1)(a-1)+a(1-a)-a,再根据化简结果,你发现该代数式的值与a的取值有什么关系?(不必说理).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.计算2$\sqrt{\frac{1}{2}}$-$\sqrt{18}$的结果是-2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案