如图,平面直角坐标系中,四边形OABC为菱形,点A在x轴的正半轴上,BC与y轴交于点D,点C的坐标为(-3,4)。
【小题1】点A的坐标为 ▲ ;
【小题2】求过点A、O、C的抛物线解析式,并求它的顶点坐标;
【小题3】在直线AB上是否存在点P,使得以点A、O、P为顶点的三角形与△COD相似。若存在,求出点P的坐标;若不存在,请说明理由。
【小题1】∵OABC为菱形,
∴BC∥OA,OC=OA=BC,
∴OD⊥BC,
∵C(-3,4),
∴CD=3,OD=4,
∴OC==5,
∴A(5,0),
【小题2】设抛物线的解析式为,
它经过点A(5,0)和点C(-3,4),则 …………………… 4分
解得 ∴ ……………………………………… 6分
∵,∴线的顶点坐标为。………………………… 8分
【小题3】因为∠OCD=∠OAB,∠ODC=90°,OC=5,OD=4,CD=3,所以………… 9分
①当∠AOP=∠ODC=90°(点P在y轴上)时,△APO∽△COD。可得
,即,PO=,此时P(0,)…………………… 11分
②当∠OPA=∠ODC=90°时,△AOP≌△COD,OP=OD=4。
过点P作PM⊥x轴,垂足为M,由可得PM=,OM=。
此时P()……………………………………………………………… 13分
综上所述,存在点符合要求的点P,它的坐标为(0,)或()…14分
解析
科目:初中数学 来源: 题型:
3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
a+2 |
S△CAD |
S△DGH |
AD |
GH |
FC+2AE |
3AM |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com