分析 (1)由圆周角定理得出∠ABE=90°,得出∠BAE+∠BEA=90°,由AF⊥BC得出∠ACD+∠CAD=90°,由圆周角定理得出∠BEA=∠ACD,即可得出结论;
(2)证明△ABE∽△ADC,得出对应边成比例$\frac{BE}{CD}=\frac{AE}{AC}$,求出BE,由圆周角定理$\widehat{BE}=\widehat{CF}$,得出CF=BE=$\frac{16}{5}$即可.
解答 (1)证明:∵AE是⊙O的直径,
∴∠ABE=90°,
∴∠BAE+∠BEA=90°,
∵AF⊥BC,
∴∠ADC=90°,
∴∠ACD+∠CAD=90°,
又∵∠BEA=∠ACD,
∴∠BAE=∠CAD;
(2)解:∵∠ABE=∠ADC=90°,∠BEA=∠ACD,
∴△ABE∽△ADC,
∴$\frac{BE}{CD}=\frac{AE}{AC}$,即$\frac{BE}{2}=\frac{8}{5}$,
解得:BE=$\frac{16}{5}$,
由(1)得:∠BAE=∠CAD,
∴$\widehat{BE}=\widehat{CF}$,
∴CF=BE=$\frac{16}{5}$.
点评 本题考查了圆周角定理、相似三角形的判定与性质;熟练掌握圆周角定理,证明三角形相似求出BE是解决问题的关键.
科目:初中数学 来源: 题型:解答题
选项 | 频数 | 频率 |
A | m | 0.15 |
B | 60 | p |
C | n | 0.4 |
D | 48 | 0.2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com