精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平面直角坐标系中,四边形ABCO是正方形,点C的坐标是(4,0).
(1)直接写出A、B两点的坐标:A
 
,B
 

(2)若E是BC上一点且∠AEB=60°,沿AE折叠正方形ABCO,折叠后点B落在平面内点F处,请画出点F并求出它的坐标;
(3)若E是直线BC上任意一点,问是否存在这样的点E,使正方形ABCO沿AE折叠后,点B恰好落在x轴上的某一点P处?若存在,请写出此时点P与点E的坐标;若不存在,请说明理由.
分析:(1)根据正方形的性质可得点的坐标.
(2)折叠问题,实际上就是轴对称,可知△AEF≌△AEB,由于∠AEB=60°,∠B=90°,∴∠BAE=30°,∠BAF=2∠BAE=60°,∠AFH=60°,AF=AB=4,解直角△AFH,求出FH,FG,可表示点F的坐标.
(3)根据轴对称的性质可知存在.
解答:解:(1)A(0,4),B(4,4);

(2)如图,过点F分别作FG⊥x轴于点G,作FH⊥y轴于点H精英家教网
∵∠AEF=∠AEB=60°,
∴∠HAF=∠FAE=∠BAE=30°
在Rt△AHF中,HF=
1
2
AF=
1
2
×4=2,
AH=AFsin60°=4×
3
2
=2
3

即OH=4-2
3

因此F(2,4-2
3
).

(3)存在.
P(0,0),E(4,0).
点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等,通过解直角三角形,求点F的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案