精英家教网 > 初中数学 > 题目详情
二次函数y=ax2+bx+c的值恒为正,则a,b,c应满足(  )
A.a>0,b2-4ac>0B.a>0,b2-4ac<0
C.a<0,b2-4ac>0D.a<0,b2-4ac<0
根据题意画出相应的图形,如图所示:

由二次函数y=ax2+bx+c的值恒为正,根据图形可得出抛物线开口向上,且与x轴没有交点,
则a,b,c应满足a>0,b2-4ac<0.
故选B
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DEPC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C(如图),点C的坐标为(0,-3),且BO=CO.
(1)求出B点坐标和这个二次函数的解析式;
(2)求△ABC的面积;
(3)若P是抛物线对称轴上一个动点,求当PA+PC的值最小时P点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-x+c经过点Q(-2,
3
2
),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、B两点,如图.
(1)求抛物线的解析式;
(2)求A、B两点的坐标;
(3)设PB于y轴交于C点,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使锐角△AOB的面积等于3.求点B的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:
(1)试判断y与x之间的函数关系,并求出函数关系式;
(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;
(3)在(2)的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:
(1)写出方程ax2+bx+c=0的两个根;
(2)当x为何值时,y>0;y<0?
(3)写出y随x的增大而减小的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知二次函数y=ax2+bx+c的图象经过点(-1,0),(2,0),当y随x的增大而减小时,x的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a-2b+c=0;②a<b<0;③2a+c>0;④2a-b+1>0.其中正确结论的个数是______个.

查看答案和解析>>

同步练习册答案