精英家教网 > 初中数学 > 题目详情

【题目】在ABCD中,过点D作对DE⊥AB于点E,点F在边CD上,CF=AE,连结AF,BF.

(1)求证:四边形BFDE是矩形.
(2)若CF=6,BF=8,DF=10,求证:AF是∠DAB的角平分线.

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AB∥CD,AB=CD,

∵CF=AE,

∴BE=DF.

∴四边形BFDE为平行四边形.

∵DE⊥AB,

∴∠DEB=90°.

∴四边形BFDE是矩形


(2)证明:由(1)得,四边形BFDE是矩形,

∴∠BFD=90°.

∴∠BFC=90°,

在Rt△BFC中,由勾股定理得:BC= = =10.

∴AD=BC=10.

∵DF=10,

∴AD=DF.

∴∠DAF=∠DFA.

∵AB∥CD,

∴∠DFA=∠FAB.

∴∠DAF=∠FAB.

∴AF平分∠DAB.

即AF是∠DAB的平分线


【解析】(1)由平行四边形的性质和已知条件得出BE=DF,证明四边形BFDE为平行四边形,再由DE⊥AB,即可得出结论;(2)由矩形的性质和勾股定理求出BC,得出AD=BC=DF,证出∠DAF=∠DFA,再由平行线的性质即可得出结论.
【考点精析】通过灵活运用平行四边形的性质和矩形的判定方法,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BCAC , 点DBC上,且DC=AC , ∠ACB的平分线CFADF , 点EAB的中点,连接EF
(1)求证:2EF=BD
(2)四边形BDFE的面积为6,求△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点A的坐标为(1,0),P是第一象限内任意一点,连接PO,PA,若∠POA=m°,∠PAO=n°,则我们把(m°,n°)叫做点P 的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).
(1)点( )的“双角坐标”为
(2)若点P到x轴的距离为 ,则m+n的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究函数y=x+ 的图象与性质
(1)函数y=x+ 的自变量x的取值范围是
(2)下列四个函数图象中,函数y=x+ 的图象大致是

(3)对于函数y=x+ ,求当x>0时,y的取值范围.
请将下面求解此问题的过程补充完整:
解:∵x>0
∴y=x+
=( 2+( 2
=( 2+
∵( 2≥0,
∴y
(4)若函数y= ,则y的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,∠A=30°,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E两点,并连结BD,DE. 则∠BDE的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y1=mx2+(m﹣3)x﹣3(m>0)与x轴交于A、B两点,且点A在点B的左侧,与y轴交于点C,OB=OC.

(1)求这条抛物线的表达式;
(2)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,若点C在直线y2=﹣3x+t上,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,一次函数 与反比例函数 的图象在第一象限的交点为A(1,n).

(1)求m与n的值;
(2)设一次函数的图象与x轴交于点B,连结OA,求∠BAO的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍摄地点的一种方法.为了确定视频拍摄地的经度,我们需要对比视频中影子最短的时刻与同一天东经120度影子最短的时刻.在一定条件下,直杆的太阳影子长度l(单位:米)与时刻t(单位:时)的关系满足函数关系l=at2+bt+c(a,b,c是常数),如图记录了三个时刻的数据,根据上述函数模型和记录的数据,则该地影子最短时,最接近的时刻t是(
A.12.75
B.13
C.13.33
D.13.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.
“文明在我身边”摄影比赛成绩统计表

分数段

频数

频率

60≤x<70

18

0.36

70≤x<80

17

c

80≤x<90

a

0.24

90≤x≤100

b

0.06

合计

1

根据以上信息解答下列问题:

(1)统计表中c的值为;样本成绩的中位数落在分数段中;
(2)补全频数分布直方图;
(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?

查看答案和解析>>

同步练习册答案