【题目】已知a是最大的负整数,b、c满足,且a,b,c分别是点A,B,C在数轴上对应的数.
(1)求a,b,c的值,并在数轴上标出点A,B,C;
(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?
(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)
【答案】(1)a=-1,b=3,c=-4.数轴见解析;(2)秒.(3)或-5.
【解析】
(1)根据绝对值和偶次幂具有非负性可得b-3=0,c+4=0,进而可得答案;
(2)根据(1)中的数据得到BC=7,结合运动时间=运动路程÷运动速度解答;
(3)注意数轴上两点间的距离公式:两点所对应的数的差的绝对值.
(1)∵a是最大的负整数,
∴a=-1,
∵|b-3|+(c+4)2=0,
∴b-3=0,c+4=0,
∴b=3,c=-4.
表示在数轴上为:
(2)BC=3-(-4)=7,则运动时间为秒.
(3)设点M表示的数为x,使P到A、B、C的距离和等于13,
①当M在点B的右侧,x-(-4)+x-(-1)+x-3=13.
解得x=,
即M对应的数是.
②当M在C点左侧,(-4)-x+(-1)-x+3-x=13.
解得x=-5,
即M对应的数是-5.
综上所述,点M表示的数是或-5.
科目:初中数学 来源: 题型:
【题目】把正整数1,2,3,4,2016排列成如图所示的形式.
(1)用一个矩形随意框住4个数,把其中最小的数记为,另三个数用含式子表示出来,当被框住的4个数之和等于418时,值是多少?
(2)被框住的4个数之和能否等于724?如果能,请求出此时x值;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4.5>=5,<-1.5>=-1.解决下列问题.
(1)[-4.5]=_____;<3.5>=________;
(2)若[x]=2,则x的取值范围是________;若<y>=-1,则y的取值范围是_______.
(3)若,则x为_________.
(4)已知x、y满足方程组,求x、y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标为(10,0),点B的坐标为(10,8),已知直线AC与双曲线y=(m≠0)在第一象限内有一交点Q(5,n).
(1)求直线AC和双曲线的解析式;
(2)若动点P从A点出发,沿折线AO→OC的路径以每秒2个单位长度的速度运动,到达C处停止.求△OPQ的面积S与的运动时间t秒的函数关系式,并求当t取何值时S=10.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与两轴分别交于A、B、C三点,已知点A(一3,O),B(1,0).点P在第二象限内的抛物线上运动,作PD上轴子点D,交直线AC于点E.
(1)
(2)过点P作PF⊥AC于点F.求当△PEF的周长取最大值时点P的坐标.
(3)连接AP,并以AP为边作等腰直角△APQ,当顶点Q恰好落在抛物线的对称轴上时,求对应的P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明家的住房结构平面图,(单位:米),装修房子时,他打算将卧室以外的部分都铺上地砖,
(1)若铺地砖的价格为80元/平方米,那么购买地砖需要花多少钱?(用代数式表示);
(2)已知房屋的高度为3米,现在想要在客厅和卧室的墙壁上贴上壁纸,那么需要多少平方米的壁纸(门窗所占面积忽略不计)?(用代数式表示);
(3)若x=4,y=5,且每平方米地砖的价格是90元,每平方米壁纸的价格是15元,那么,在这两项装修中,小明共要花费多少钱?(各种小的损耗不计).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是⊙O的内接三角形,CE⊥AB于点E,BD⊥AC于点D,BD、CE相交于点F,连结ED.
(1)若∠ABC=45°,证明AE=EF;
(2)求证:△AED∽△ACB;
(3)过点A的直线AM∥ED, AM是⊙O的切线吗?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com