精英家教网 > 初中数学 > 题目详情
4.学校为了调查学生对学生食堂的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意”,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,图(1),图(2)是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:
(1)本次问卷调查,共调查了多少名学生?
(2)将图(1)补充完整;
(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?

分析 (1)根据C小组的频数和其所占的百分比求得总人数即可;
(2)用调查的人数乘以B小组所占的百分比即可求得B组的频数;
(3)用总人数乘以不满意人数所占的百分比即可.

解答 解:(1)由条形统计图知:C小组的频数为40,
由扇形统计图知:C小组所占的百分比为20%,
故调查的总人数为:40÷20%=200人;
(2)B小组的人数为:200×50%=100人,

(3)1000×(1-50%-25%-20%)=50人,
故该校对教学感到不满意的人数有50人.

点评 本题考查了条形统计图的知识,解题的关键是仔细的读图并从图形中找到进一步解题的有关信息.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,点A在函数y=$\frac{4}{x}$(x>0)图象上,过点A作x轴和y轴的平行线分别交函数y=$\frac{1}{x}$图象于点B、C,直线BC与坐标轴的交点为D、E.当点A在函数y=$\frac{4}{x}$(x>0)图象上运动时,
(1)设点A横坐标为a,则点B的坐标为($\frac{1}{4}$a,$\frac{4}{a}$),点C的坐标为C(a,$\frac{1}{a}$)(用含a的字母表示);
(2)△ABC的面积是否发生变化?若不变,求出△ABC的面积,若变化,请说明理由;
(3)请直接写出BD与CE满足的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=30cm.点P从点A出发,以1cm/s的速度向点D移动,点Q从点C出发,以3cm/s的速度向点B运动,点P和点Q分别从点A和点C同时出发,移动时间为ts.规定若其中一个动点先到达端点(终点)时,另一个动点也随之停止运动.
(1)求时间t的取值范围;
(2)当四边形ABQP为矩形时,求时间t的值;
(3)是否存在时间t的值,使得△APQ的面积是△ABC的面积的一半?若存在,请求出t的值,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,已知点A(1,a)与点B(b,1)在反比例函数y=$\frac{2}{x}$(x>0)图象上,点P(m,0)是x轴上的任意一点,若△PAB的面积为2,此时m的值是-1或7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知抛物线y=ax2+x+c(a≠0)经过点A(-1,0),B(2,0)两点,与y轴相交于点C,点D为抛物线的顶点.
(1)求抛物线的解析式及点D的坐标;
(2)△ABC的外接圆与抛物线的另一交点为E,直接写出E点的坐标;
(3)记△ABC得外接圆圆心为M,求圆心M的坐标;
(4)在x轴上有一点P,且∠EBO+∠MPO=α,当tanα=3时,求OP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:
①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=122.5°;④BC+FG=$\sqrt{2}$
其中正确的结论是①②④(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知在平面直角坐标系xOy中,O为坐标原点,点A,B分别在x轴上(点A在原点左侧,点B在原点右侧),OB=4OA,经过点A,B的抛物线交y轴于点C(0,2),且∠ACB=90°.
(1)求抛物线的解析式;
(2)点N为该抛物线第一象限上一点,满足∠NOC=∠CBO,联结BN,NO,求△BON的面积;
(3)点D为抛物线对称轴上一点,且在x轴下方,点E在y轴负半轴上,当以B,E,D为顶点的三角形与△ABC相似时(∠DBE与∠ABC为对应角),求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2014年交易额为50万元,2016年交易额为72万元.
(1)求2014年至2016年“双十一”交易额的年平均增长率;
(2)如果按(1)中的增长率,到2017年“双十一”交易额是否能达到100万元?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.先化简,再求值:$({1+\frac{1}{{{x^2}-1}}})÷\frac{x^2}{x+1}$,其中x是一元二次方程x2-2x-2=0的正数解.

查看答案和解析>>

同步练习册答案