精英家教网 > 初中数学 > 题目详情
在△ABC中,已知AB=15,AC=13,BC边上的高AD=12,则△ABC的周长为(  )
A.14B.42C.32D.42或32
此题应分两种情况说明:
(1)当△ABC为锐角三角形时,在Rt△ABD中,
BD=
AB2-AD2
=
152-122
=9,
在Rt△ACD中,
CD=
AC2-AD2
=
132-122
=5,
∴BC=5+9=14
∴△ABC的周长为:15+13+14=42;

(2)当△ABC为钝角三角形时,
在Rt△ABD中,BD=
AB2-AD2
=
152-122
=9,
在Rt△ACD中,CD=
AC2-AD2
=
132-122
=5,
∴BC=9-5=4.
∴△ABC的周长为:15+13+4=32
∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.
故选D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点C在线段BD上,AC⊥BD,CA=CD,点E在线段CA上,且满足DE=AB,连接DE并延长交AB于点F.
(1)求证:DE⊥AB;
(2)若已知BC=a,AC=b,AB=c,设EF=x,则△ABD的面积用代数式可表示为;S△ABD=
1
2
c(c+x)
你能借助本题提供的图形,证明勾股定理吗?试一试吧.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,Rt△ABC中,∠C=90°,点D、E分别在AB、AC上,且DE⊥AB.若DE将ABC分成面积相等的两部分,且S△ABC=20,AE=8,则AD=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积进行了证明.著名数学家华罗庚提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
请根据图1中直接三角形叙述勾股定理.

以图1中的直角三角形为基础,可以构造出以a,b为底,以a+b为高的直角梯形(如图2).请你利用图2,验证勾股定理;
利用图2中的直角梯形,我们可以证明
a+b
c
2
.其证明步骤如下:
∵BC=a+b,AD=______;
又∵在直角梯形ABCD中有BC______AD(填大小关系),即______.
a+b
c
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一圆柱高8cm,底面直径是4cm,一只蚂蚁在圆柱表面从点A爬到点B处吃食,要爬行的最短路程(取π=3)是(  )
A.10cmB.12cmC.14cmD.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,AB=BC,D为AC边的中点,过点D作DE⊥DF,交AB于点E,交BC于点F.
(1)试判断线段DE与DF是否相等?并说明理由;
(2)若AE=4,FC=3,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A2的边长为6cm,正方形B的边长为5cm,正方形C的边长为5cm,则正方形D的面积是______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,有一个圆锥形的粮堆,其主视图是边长为6cm的正三角形,母线的中点P处有一老鼠正在偷吃粮食,小猫从B处沿圆锥表面去偷袭老鼠,则小猫经过的最短路程是______(结果不取近似数)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,CD为高,且AD=2,BD=8,如果CD=4,那么∠ACB的平分线CE=______.

查看答案和解析>>

同步练习册答案