精英家教网 > 初中数学 > 题目详情

如图,山顶建有一座铁塔,塔高CD=30m,某人在点A处测得塔底C的仰角为20°,塔顶D的仰角为23°,求此人距CD的水平距离AB.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin23°≈0.391,cos23°≈0.921,tan23°≈0.424)

 

 

 

【答案】

在Rt△ABC中,∠CAB=20°,∴BC=AB•tan∠CAB=AB•tan20°.

在Rt△ABD中,∠DAB=23°,

∴BD=AB•tan∠DAB=AB•tan23°.

∴CD=BD﹣BC=AB•tan23°﹣AB•tan20°=AB(tan23°﹣tan20°).

∴AB==500(m).

答:此人距CD的水平距离AB约为500m.

【解析】利用Rt△ABC中的边角关系将BC的长用含AB的式子表示.利用Rt△ABD的边角关系将BD的长用含AB的式子表示,从而得出用含AB的式子表示CD,建立方程求的AB的值.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,山顶建有一座铁塔,塔高CD=30m,某人在点A处测得塔底C的仰角为20°,塔顶D的仰角为23°,求此人距CD的水平距离AB.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin23°≈0.391,cos23°≈0.921,tan23°≈0.424)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,山顶建有一座铁塔,塔高BC=80米,测量人员在一个小山坡的P处测得塔的底部B点的仰角为45°,塔顶C点的仰角为60度.已测得小山坡的坡角为30°,坡长MP=40米.求山的高度AB(精确到1米).(参考数据:
2
≈1.414,
3
≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,山顶建有一座铁塔,塔高CD=20m,某人在点A处,测得塔底C的仰角为45°,塔顶D的仰角为60°,求山高BC(精确到1m,参考数据:
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,山顶建有一座铁塔,塔高CD=30m,某人在点A处测得塔底C的仰角为20°,塔顶D的仰角为23°,此人距CD的水平距离AB为
500m
500m
.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin23°≈0.391,cos23°≈0.921,tan23°≈0.424)

查看答案和解析>>

同步练习册答案