精英家教网 > 初中数学 > 题目详情
如图,设△ABC为正三角形,边长为1,P,Q,R分别在AB,BC,AC边上,且AR=BP=CQ=
13
.连A精英家教网Q,BR,CP两两相交得到△MNS,则△MNS的面积是
 
分析:先根据△ABC为正三角形,边长为1,且AR=BP=CQ=
1
3
得出△BPC≌△COA≌△ARB,△BPC∽△NQC,再求出△BPC及△ABC的面积,由相似三角形的性质可求出△NOC的面积,进而可得出答案.
解答:解:∵△ABC为正三角形,边长为1,
∴S△ABC=
1
2
×1×
3
2
=
3
4
精英家教网
∵AR=BP=CQ=
1
3

∴△BPC≌△COA≌△ARB,
∴∠CON=∠BPC,∠BCP=∠BCP,
∴△BPC∽△QNC,其相似比为
QC
BC
=
1
3
1
=
1
3

∵S△BPC=
1
2
×
1
3
×
3
2
=
3
12

∴S△BPC=
3
108

∴△MNS的面积=S△ABC-3S△BPC+3S△BPC=
3
4
-3×
3
12
+3×
3
108
=
3
36

故答案为:
3
36
点评:本题考查的是面积及等积变换,能根据题意得出△BPC∽△NQC,再由相似三角形的性质得出答案是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网(在下面的(I)(II)两题中选做一题,若两题都做,按第(I)题评分)
(I)如图,在△ABC中,AB=4,BC=3,∠B=90°,点D在AB上运动,但与A、B不重合,过B、C、D三点的圆交AC于E,连接DE.
(1)设AD=x,CE=y,求y与x之间的函数关系式,并指出自变量x的取值范围;
(2)当AD长为关于x的方程2x2+(4m+1)x+2m=0的一个整数根时,求m的值.

(II)如图,在直角坐标系xOy中,以点A(0,-3)为圆心作圆与x轴相切,⊙B与⊙A外切干点P,B点在x轴正半轴精英家教网上,过P点作两圆的公切线DP交y轴于D,交x轴于C,
(1)设⊙A的半径为r1,⊙B的半径为r2,且r2=
23
r1,求公切线DP的长及直线DP的函数解析式,
(2)若⊙A的位置、大小不变,点B在X轴正半轴上移动,⊙B与⊙A始终外切.过D作⊙B的切线DE,E为切点.当DE=4时,B点在什么位置?从解答中能发现什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桥东区二模)如图,Rt△ABC在平面直角坐标系中,BC在x轴上,B(-1,0)、A(0,2),AC⊥AB.
(1)求线段OC的长.
(2)点P从B点出发以每秒4个单位的速度沿x轴正半轴运动,点Q从A点出发沿线段AC以
5
个单位每秒速度向点C运动,当一点停止运动,另一点也随之停止,设△CPQ的面积为S,两点同时运动,运动的时间为t秒,求S与t之间关系式,并写出自变量取值范围.
(3)Q点沿射线AC按原速度运动,⊙G过A、B、Q三点,是否有这样的t值使点P在⊙G上?如果有求t值,如果没有说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,也可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=
1
2
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3

(2)对于0°<A<180°,∠A的正对值sadA的取值范围是
0<sadA<2
0<sadA<2

(3)如图,已知sinA=
3
5
,其中A为锐角,试求sadA的值;
(4)设sinA=k,请直接用k的代数式表示sadA的值为
2-2
1-k2
2-2
1-k2

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•青岛模拟)同学们已经认识了很多正多边形,现以正六边形为例再介绍与正多边形相关的几个概念.如正六边形ABCDEF各边对称轴的交点O,又称正六边形的中心,其中OA称正六边形的半径,通常用R表示,∠AOB称为中心角,显然.提出问题:正多边形内任意一点到各边距离之和与这个正多边形的半径R和中心角有什么关系?
探索发现:
(1)为了解决这个问题,我们不妨从最简单的正多边形--正三角形入手.
如图①,△ABC是正三角形,半径OA=R,∠AOB是中心角,P是△ABC内任意一点,P到△ABC各边距离分别为h1、h2、h3 ,确定h1+h2+h3的值与△ABC的半径R及中心角的关系.
解:设△ABC的边长是a,面积为S,显然S=
1
2
a(h1+h2+h3
O为△ABC的中心,连接OA、OB、OC,它们将△ABC分成三个全等的等腰三角形,过点O作OM⊥AB,垂足为M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如图②,五边形ABCDE是正五边形,半径是R,P是正五边形ABCDE内任意一点,P到五边形ABCDE各边距离分别为h1、h2、h3、h4、h5,参照(1)的探索过程,确定h1+h2+h3+h4+h5的值与正五边形ABCDE的半径R及中心角的关系.
(3)类比上述探索过程,直接填写结论
正六边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八边形(半径是R)内任意一点P到各边距离之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n边形(半径是R)内任意一点P到各边距离之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,边长均为6的正△ABC和正△A′B′C′原来完全重合.如图2,现保持正△ABC不动,使正△A′B′C′绕两个正三角形的公共中心点O按顺时针方向旋转,设旋转角度为α(α>0°).(注:除第 (3)题中的第②问,其余各问只要直接给出结果即可)
(1)当α多少时,正△A′B′C′与正△ABC出现旋转过程中的第一次完全重合?
(2)当0°<α<360°时,要使正△A′B′C′与正△ABC重叠部分面积最小,α可以取哪些角度?
(3)旋转时,如图3,正△ABC和正△A′B′C′始终具有公共的外接圆⊙O.当0°<α<60°时,记正△A′B′C′与正△ABC重叠部分为六边形DEFGHI.当α在这个范围内变化时,
①求△ADI面积S相应的变化范围;
②△ADI的周长是否一定?说出你的理由.
精英家教网

查看答案和解析>>

同步练习册答案