精英家教网 > 初中数学 > 题目详情
如图,已知扇形的圆心角为2α(定值),半径为R(定值),分别在图一、二中作扇形的内接矩形,若按图一作出的矩形面积的最大值为
1
2
R2tanα
,则按图二作出的矩形面积的最大值为(  )
分析:将图二可拆分成两个图一的形式,可以类比得到结论.图一角是2α,图二拆分后角是α,故矩形面积的最大值为
1
2
r2tan
α
2
,由此可得结论.
解答:解:图一,设∠MOQ=x,则MQ=Rsinx
在△OMN中,
MN
sin(2α-x)
=
r
sin(180-2α)

∴MN=
rsin(2α-x)sinx
sin2α

∴矩形面积S=
r2sin(2α-x)sinx
sin2α
=
r2
2sin2α
[cos(2x-2α)-cos2α]≤
r2
2sin2α
[1-cos2α]=
1
2
R2tanα
当且仅当x=α时,取得最大值,故图一矩形面积的最大值为
1
2
R2tanα,图二可拆分成两个,
图一角是2α,图二拆分后角是α,故根据图1得出的结论,可得矩形面积的最大值为
1
2
R2tan
α
2

而图二时由两个这样的图形组成,所以两个则为R2tan
α
2

故答案为:R2tan
α
2

故选B.
点评:本题考查扇形内接矩形面积问题,考查学生分析解决问题的能力,解题的关键是发现两个图之间的联系,利用已有的结论进行解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知矩形纸片ABCD,AD=2,AB=
3
,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为(  )
A、1
B、
1
2
C、
1
3
D、
1
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知矩形ABCD中,AB=1cm,BC=2cm,以B为圆心,BC为半径作
14
圆弧交AD于F,交BA的延长线于E,求扇形BCE被矩形所截剩余部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形ABCD,以A为圆心,AD为半径的圆交AC、AB于M、E,CE的延长线交⊙A于F,CM=2,AB=4.
(1)求⊙A的半径;
(2)如果点F沿着圆周运动,点E保持不变,FE与CD边相交于点P,当∠FPD=72°时,求扇形EAF的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知,正方形ABCD和一个圆心角为45°的扇形,圆心与A点重合,此扇形绕A点旋转时,两半径分别交直线BC、CD于点P.K.
(1)当点P、K分别在边BC.CD上时,如图(1),求证:BP+DK=PK.
(2)当点P、K分别在直线BC.CD上时,如图(2),线段BP、DK、PK之间又有怎样的数量关系,请直接写出结论.
(3)在图(3)中,作直线BD交直线AP、AK于M、Q两点.若PK=5,CP=4,求PM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南平模拟)如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.
(1)用直尺和圆规画出该圆弧所在圆的圆心M的位置(不用写作法,保留作图痕迹).
(2)若A点的坐标为(0,4),D点的坐标为(7,0),直线CD与⊙M的位置关系为
相切
相切
,再连接MA、MC,将扇形AMC卷成一个圆锥,求此圆锥的侧面积.

查看答案和解析>>

同步练习册答案