精英家教网 > 初中数学 > 题目详情
8.如图,在平行四边形ABCD中,AD=2AB,AH⊥CD于H,M为AD的中点,MN∥AB,连接NH,如果∠D=68°,则∠CHN=56°.

分析 先连接MH,根据直角三角形的性质,求得∠D=∠MHD=68°,再根据平行线的性质,得到∠NMH=∠MHD=68°,最后根据等腰三角形MHN,求得∠MHN的度数,即可得到∠CHN的度数.

解答 解:连接MH,
∵AH⊥CD于H,M为AD的中点,
∴MH=$\frac{1}{2}$AD=DM,
∴∠D=∠MHD=68°,
∵MN∥AB,
∴∠NMH=∠MHD=68°,
又∵MN=AB=$\frac{1}{2}$AD,
∴MN=MH,
∴∠MHN=(180°-68°)÷2=56°,
∴∠CHN=180°-∠DHM-∠MHN=56°.
故答案为:56°

点评 此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.若关于x的多项式ax2-abx+b与bx2+abx+2a的和是一个单项式,且ab≠0,则$\frac{a}{b}$的值为-1或-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.一只小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:+7,-3,+10,-8,-4,+12,-10,-4.(单位:厘米)
(1)请通过计算判断小虫最后是否回到出发点A?
(2)小虫在爬行过程中,如果每爬行1厘米奖励2粒芝麻,则小虫一共得到多少粒芝麻?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.小明在做一道计算题目(2+1)(22+1)(24+1)(28+1)(216+1)的时候是这样分析的:这个算式里面每个括号内都是两数和的形式,跟最近学的两大公式作对比,发现跟平方差公式很类似,但是需要添加两数的差,于是添了(2-1),并做了如下的计算:
(2+1)(22+1)(24+1)(28+1)(216+1)
=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)
=(24-1)(24+1)(28+1)(216+1)
=(28-1)(28+1)(216+1)
=(216-1)(216+1)
=232-1
请按照小明的方法:
(1)计算(3+1)(32+1)(34+1)(38+1)(316+1)
(2)直接写出(5+1)(52+1)(54+1)…(52016+1)-$\frac{{5}^{4032}}{4}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)用直尺和圆规作出如图三角形ABC的外接圆⊙O (不写作法,保留作图痕迹).
(2)若在△ABC中,AC=4米,∠ABC=45°,试求⊙O半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB、下列确定P点的方法正确的是(  )
A.P为∠A、∠B两角平分线的交点
B.P为AC、AB两边上的高的交点
C.P为∠A的角平分线与AB的垂直平分线的交点
D.P为AC、AB两边的垂直平分线的交点

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.正十边形一个内角度数为144°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.阅读下列材料:
小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为$\sqrt{5}$、$\sqrt{10}$、$\sqrt{13}$,求△ABC的面积.
小明是这样解决问题的:如图①所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.
请回答:
(1)图1中△ABC的面积为$\frac{7}{2}$;
参考小明解决问题的方法,完成下列问题:
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).
①利用构图法在答卷的图2中画出三边长分别为$\sqrt{13}$、2$\sqrt{5}$、$\sqrt{29}$的格点△DEF;
②计算△DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:(-81)÷$\frac{9}{4}$×$\frac{4}{9}$÷(-8).

查看答案和解析>>

同步练习册答案