精英家教网 > 初中数学 > 题目详情
已知边长为4的正方形ABCD截去一个角后成为五边形ABCFE(如图).其中EF=,cot∠DEF=
(1)求线段DE、DF的长;
(2)若点P是线段EF上的一个动点,过P作PG⊥AB,PH⊥BC,设PG=x,四边形BHPG的面积y,求y关于x的函数关系式(写出定义域).并画出函数大致图象;
(3)当点P运动到四边形BHPG相邻两边之比为2:3时,求四边形BHPG的面积.

【答案】分析:(1)根据cot∠DEF=,可以设出DE=m.则DF=2m,然后利用勾股定理可以直接求出线段DE、DF的长;
(2)延长GP交DC于M,根据平行线分线断成比例可得=,设PG=x,表示出FM,PM的长,即可得到关系式;
(3)点P运动到四边形BHPG相邻两边之比为2:3,要分情况讨论,当=时,当=时,分别求出y的值.
解答:解:(1)∵四边形ABCD是正方形,
∴∠D=90°,
设DE=m.则DF=2m,
DE2+DF2=EF2
即;5m2=5,
∴m=1,
∴DE=1,DF=2;

(2)延长GP交DC于M,
∵PG⊥AB,PH⊥BC,
∴GP∥AD∥CB,
∴PH∥BG,
=
∵PG=x,GM=BC=AD=4,
PM=4-x,FM=2(4-x),
∴PH=CM=CF+FM=2+2(4-x)=10-2x,
∴y=x(10-2x)=-2x 2+10x(3≤x≤4);
如图所示:

(3)当=时,
=
x=(不合题意舍去),
=时,
x=
y=
故四边形BHPG的面积为
点评:此题主要考查了勾股定理,正方形的性质,平行线分线段成比例定理,综合性较强,关键是设线段的长,利用相似的性质表示矩形的面积,用二次函数的方法解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知边长为a的正方形ABCD,点E在AB上,点F在BC的延长线上,EF与AC交于点O,且AE=精英家教网CF.
(1)若a=4,则四边形EBFD的面积为
 

(2)若AE=
13
AB,求四边形ACFD与四边形EBFD面积的比;
(3)设BE=m,用含m的式子表示△AOE与△COF面积的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知边长为1的正方形在坐标系中的位置,如图∠α=75°,求D点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知边长为2的正方形ABCD,P是BC边上一点,E是BC边延长线上一点,过点P作PF⊥AP与∠DCE的平分线CF交于点F.AF与CD交于点G.
(1)求证:AP=PF;
(2)若AP=AG,试说明PG与CF有怎样的位置关系,并求△APG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林)如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B、C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E.设BP=x,△PCE面积为y,则y与x的函数关系式是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知边长为4的正方形ABCD,点E在AB上,点F在BC的延长线上,EF与AC交于点H,且AE=CF=m,则四边形EBFD的面积为
16
16
;△AHE与△CHF的面积的和为
2m
2m
(用含m的式子表示).

查看答案和解析>>

同步练习册答案