精英家教网 > 初中数学 > 题目详情
如图,已知矩形ABCD,AB=
3
,BC=3,在BC上取两点E,F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.
(1)求△PEF的边长;
(2)在不添加辅助线的情况下,当F与C不重合时,从图中找出一对相似三角形,并说明理由;
(3)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系并证明你猜想的结论.
(1)过P作PQ⊥BC于Q,
∵矩形ABCD,
∴∠B=90°,即AB⊥BC,又ADBC.
∴PQ=AB=
3

∵△PEF是等边三角形,
∴∠PFQ=60°.
在Rt△PQF中sin60°=
3
PF

∴PF=2.
∴△PEF的边长为2.

(2)方法一:△ABC△CDA.
理由:∵矩形ABCD,
∴ADBC,
∴∠1=∠2,
∴∠B=∠D=90°,
∴△ABC△CDA.
方法二:△APH△CFH.
理由:∵矩形ABCD,
∴ADBC,
∴∠2=∠1,
又∵∠3=∠4,
∴△APH△CFH.

(3)猜想:PH与BE的数量关系是:PH-BE=1,
证法一:在Rt△ABC中,AB=
3
,BC=3,
∴tan∠1=
AB
BC
=
3
3

∴∠1=30°.
∵△PEF是等边三角形,
∴∠2=60°,PF=EF=2.
∵∠2=∠1+∠3,
∴∠3=30°.
∴∠1=∠3.
∴FC=FH.
∵PH+FH=2,BE+EF+FC=3,FC=FH,EF=2,
∴BE+FC=3-2=1,
∴PH-BE=1.
证法二:在Rt△ABC中,AB=
3
,BC=3,
∴tan∠1=
AB
BC
=
3
3

∴∠1=30°.
∵△PEF是等边三角形,PE=2,
∴∠2=∠4=∠5=60°.
∴∠6=90°.
在Rt△CEG中,∠1=30°,
∴EG=
1
2
EC,即EG=
1
2
(3-BE).
在Rt△PGH中,∠7=30°,
∴PG=
1
2
PH.
∴PE=EG+PG=
1
2
(3-BE)+
1
2
PH=2.
∴PH-BE=1.
证法三:在Rt△ABC中,AB=
3
,BC=3,
∴tan∠1=
AB
BC
=
3
3
,AC2=AB2+BC2∴∠1=30°,AC=2
3

∵△PEF是等边三角形,
∴∠4=∠5=60°.(3分)
∴∠6=∠8=90°.
∴△EGC△PGH,
PH
EC
=
PG
EG

PH
3-BE
=
2-EG
EG

∵∠1=∠1,∠B=∠6=90°,
∴△CEG△CAB.
EG
AB
=
EC
AC
EG
3
=
3-BE
2
3

∴EG=
1
2
(3-BE)②
把②代入①得,
PH
3-BE
=
2-
1
2
(3-BE)
1
2
(3-BE)

∴PH-BE=1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在三角形ABC中,AB=24,AC=18,D是AC上一点AD=12,在AB上取一点E,使A、D、E三点组成的三角形与ABC相似,则AE=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AB=AC,AD是高,EFBC,则图中与△ADC相似的三角形共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有______个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,ABCD,∠ACD=72°.
(1)用直尺和圆规作∠C的平分线CE,交AB于E,并在CD上取一点F,使AC=AF,再连接AF,交CE于K;(要求保留作图痕迹,不必写出作法)
(2)依据现有条件,直接写出图中所有相似的三角形,(图中不再增加字母和线段,不要求证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知△ABC如图,则下列4个三角形中,与△ABC相似的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,能使△ACD△BCA的条件是(  )
A.
AC
CD
=
AB
BC
B.AC2=CD•CBC.
AB
AC
=
BD
CD
D.CD2=AD•BD

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,D是AB边上一点,连接CD.要使△ACD与△ABC相似,应添加的条件是______.(只需写出一个条件即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知△ABC中,点D、E分别在边AB、AC上.下列条件中,不能推断△ADE与△ABC相似的是(  )
A.∠ADE=∠BB.∠ADE=∠CC.
AD
AB
=
DE
BC
D.
AD
AC
=
AE
AB

查看答案和解析>>

同步练习册答案