精英家教网 > 初中数学 > 题目详情

将如图所示正方形ABCD绕点C顺时针旋转以下度数,分别作出旋转之后的图形(保留原图以作对比):

(1);(2);(3)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,A是反比例函数y=
k
x
(x>0)图象上一点,作AB⊥x轴于B点,AC⊥y轴于C点,得正方形OBAC的面积为16.

(1)求A点的坐标及反比例函数的解析式;
精英家教网
(2)点P(m,
16
3
)是第一象限内双曲线上一点,请问:是否存在一条过P点的直线l与y轴正半轴交于D点,使得BD⊥PC?若存在,请求出直线l的解析式;若不存在,请说明理由;
精英家教网
(3)连BC,将直线BC沿x轴平移,交y轴正半轴于D,交x轴正半轴于E点(如图所示),DQ⊥y轴交双曲线于Q点,QF⊥x轴于F点,交DE于H,M是EH的中点,连接QM、OM.下列结论:①QM+OM的值不变;②
QM
OM
的值不变.可以证明,其中有且只有一个是正确的,请你作出正确的选择并求值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网搬进新居后,小杰自己动手用彩塑纸做了一个如图所示的正方形的挂式小饰品ABCD,彩线BD、AN、CM将正方形ABCD分成六部分,其中M是AB的中点,N是BC的中点,AN与CM交于O点.已知正方形ABCD的面积为576cm2,则被分隔开的△CON的面积为(  )
A、96cm2B、48cm2C、24cm2D、以上都不对

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,某地计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米,计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分,其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种花,每平方米投资12元;在△BHE、△FCG上都种草,每平方米投资8元;在矩形EFGH上兴建精英家教网爱心鱼塘,每平方米投资5元,设矩形的一边FG长为x米.
(1)用含x的式子表示矩形的一边HG的长度;
(2)为了美观,若要将爱心鱼塘建成正方形,这个鱼塘的边长是多少?
(3)当种草的面积与种花的面积相等时,求FG的长;
(4)根据设计要求HG的长度不<FG的长度,求当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小?最小值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CE-EO|,再以CM、CO为边作矩形CMNO.令m=
S四边形CFGH
S四边形CMNO
,则m=
1
1
;又若CO=1,CE=
1
3
,Q为AE上一点且QF=
2
3
,抛物线y=mx2+bx+c经过C、Q两点,则抛物线与边AB的交点坐标是
2
3
3
1
3
2
3
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

问题:在△ABC中,AB、BC、AC三边的长分别为
2
13
17
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.

(1)请你将△ABC的面积直接填写在横线上
5
2
5
2

(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为
2
a、2
5
a、
26
a
(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积是:
3a2
3a2

(3)若△ABC三边的长分别为
4m2+n2
16m2+n2
2
m2+n2
(m>0,n>0,m≠n),请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为:
4mn
4mn

查看答案和解析>>

同步练习册答案