精英家教网 > 初中数学 > 题目详情
15、已知△ABC≌△PMN,如图,则x=
19
,y=
17
度.
分析:只要找准找准全等三角形的对应边、对应角,然后根据全等三角形的性质可得结果,此题易做.
解答:解:△MNP中,∠M=180-45-118=17°,
∵△ABC≌△PMN,
∴MP=AB,∠B=∠M(全等三角形的对应边相等,对应角相等),
∴2x=AB=38,
∴x=19,y=17°.
点评:本题考查了全等三角形的性质;解决本题的关键是理解全等三角形的性质,全等三角形的对应边相等,对应角相等.是需要熟记的内容.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、已知△ABC的角平分线AP与边BC的垂直平分线PM相交于点P,作PK⊥AB,PL⊥AC,垂足分别是K、L,
求证:BK=CL.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,已知△ABC中,AB=AC,点P是BC上的一点,PN⊥AC于点N,PM⊥AB于点M,CG⊥AB于点G,则CG=PM+PN.
(1)如图②,若点P在BC的延长线上,则PM、PN、CG三者是否还有上述关系,若有,请说明理由,若没有,猜想三者之间又有怎样的关系,并证明你的猜想;
(2)如图③,AC是正方形ABCD的对角线,AE=AB,点P是BE上任一点,PN⊥AB于点N,PM⊥AC于点M,猜想PM、PN、AC有什么关系;(直接写出结论)
(3)观察图①、②、③的特性,请你根据这一特性构造一个图形,使它仍然具有PM、PN、CG这样的线段,并满足图①或图②的结论,写出相关题设的条件和结论
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,已知△ABC中,AB=AC,点P是BC上的一点,PN⊥AC于点N,PM⊥AB于点M,CG⊥AB于点G点.
(1)则CG、PM、PN三者之间的数量关系是
 

(2)如图②,若点P在BC的延长线上,则PM、PN、CG三者是否还有上述关系,若有,请说明理由,若没有,猜想三者之间又有怎样的关系,并证明你的猜想;
(3)如图③,AC是正方形ABCD的对角线,AE=AB,点P是BE上任一点,PN⊥AB于点N,PM⊥AC于点M,猜想PM、PN、AC有什么关系;(直接写出结论)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,∠ACB=90°,AB边上的高线CH与△ABC的两条内角平分线AM、BN分别交于P、Q两点,PM、QN的中点分别为E、F,求证:EF∥AB.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省荆门市京山县宋河镇中心校中考数学三模试卷(解析版) 题型:解答题

如图①,已知△ABC中,AB=AC,点P是BC上的一点,PN⊥AC于点N,PM⊥AB于点M,CG⊥AB于点G,则CG=PM+PN.
(1)如图②,若点P在BC的延长线上,则PM、PN、CG三者是否还有上述关系,若有,请说明理由,若没有,猜想三者之间又有怎样的关系,并证明你的猜想;
(2)如图③,AC是正方形ABCD的对角线,AE=AB,点P是BE上任一点,PN⊥AB于点N,PM⊥AC于点M,猜想PM、PN、AC有什么关系;(直接写出结论)
(3)观察图①、②、③的特性,请你根据这一特性构造一个图形,使它仍然具有PM、PN、CG这样的线段,并满足图①或图②的结论,写出相关题设的条件和结论

查看答案和解析>>

同步练习册答案