精英家教网 > 初中数学 > 题目详情
如图,圆O是△ABC的内切圆,与△ABC各边的切点分别为D、E、F,若图中3个阴影三角形的面积之和为4,内切圆半径为1,则△ABC的周长为(  )
分析:根据图中3个阴影三角形的面积之和为4,得出△ABC的面积为:8,进而利用
1
2
×1×△ABC的周长=8求出答案即可.
解答:解:∵圆O是△ABC的内切圆,与△ABC各边的切点分别为D、E、F,图中3个阴影三角形的面积之和为4,
∴△ABC的面积为:8,
∵内切圆半径为1,
1
2
×1×△ABC的周长=8,
则△ABC的周长为:16.
故选:D.
点评:此题主要考查了三角形的内切圆与内心,根据三角形内切圆半径乘以三角形周长除以2得出三角形面积是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,圆O是△ABC的外接圆,AB=AC,过点A作AP∥BC,交BO的延长线于点P.
(1)求证:AP是圆O的切线;
(2)若圆O的半径R=5,BC=8,求线段AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,圆O是△ABC的外接圆,圆心O在这个三角形的高CD上,E、F分别是边AC和BC的中点,求证:四边形CEDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡水一模)如图,圆O是△ABC的外接圆,连接OB、OC,圆O的半径R=10,sinA=
35
,则弦BC的长为
12
12

查看答案和解析>>

科目:初中数学 来源:第24章《圆》中考题集(37):24.2 点、直线和圆的位置关系(解析版) 题型:解答题

已知:如图,圆O是△ABC的外接圆,圆心O在这个三角形的高CD上,E、F分别是边AC和BC的中点,求证:四边形CEDF是菱形.

查看答案和解析>>

同步练习册答案