精英家教网 > 初中数学 > 题目详情

【题目】如图,D在△ABC的边BC上,DC=2BD,连接AD与△ABC的中线BE交于点F,连接CF,若△ABC的面积为24,则△AEF的面积为( )

A.4B.5C.6D.7

【答案】C

【解析】

可设SBDF=x,由DC=2BDSCDF=2x. EAC的中点,得SABE=SCBESAFE=SCFE,进一步可得SABF=SCBF=SBDF+SCDF=3x,于是SABD =4x,所以SACD=8x,所以SABC=SABD+SACD=12x. SABC=24可得方程12x=24,解出x=2,进一步即可求出结果.

解:设SBDF=x,∵DC=2BD,∴SCDF=2SBDF=2x.

EAC的中点,∴SABE=SCBESAFE=SCFE

SABESAFE=SCBESCFE

SABF=SCBF=SBDF+SCDF=3x

SABD=SABF+SBDF=4x

SACD=2SABD=8x

SABC=SABD+SACD=12x.

SABC=24,∴12x=24,解得x=2,∴SABF=6.

SABE=SABC=12

SAEF=SABESABF=126=6.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,反映的是小丽从家外出到最终回家,离家距离(米)与时间(分)的关系图。请根据图像回答下列问题:

1)小丽在A点表示含义:出发后______分钟时,离家距离______米;

2)出发后6-10分钟之间可能发生了什么情况:______________________________,出发后14-18分钟之间可能发生了什么情况: ________________________.

3)在28分钟内的行进过程中,____________段时间的速度最慢,为____________米分;

4)小丽在回家路上,第28分钟时停了4分钟,之后立即以100/分的速度回到家.请写出计算过程,并在图中补上28分钟以后的路程与时间关系图。

5)小丽一开始从家外出到最终回家,中途共停留了____________分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线ACBD相交于点O,且DEACCEBD

1)求证:四边形OCED是菱形;

2)若AB=3AD=4,求四边形OCED的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形外取一点,连接.过点的垂线交于点.若.下列结论:①;②点到直线的距离为;③;④;⑤;其中正确结论的序号是( )

A.①③④B.①②⑤C.③④⑤D.①③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,MON=ɑ0°<ɑ<180°,A.B分别在OMON上运动(不与点O重合).

(1)如图1,MON=90°BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D.

①若∠BAO=60°,则∠D=___.

②猜想:∠D的度数是否随AB的移动发生变化?并说明理由。

(2)如图2,∠MON=α(0°<α<180°)”,ABC=ABN,BAD=BAO,其余条件不变,则∠D=___°(用含αn的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,ABODBDACAEDE分别平分∠CAB,∠ODB,则∠AED=_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:

1

2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+2x﹣3x轴交于A、B两点,且B(1,0)

(1)求抛物线的解析式和点A的坐标;

(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;

3)如图2,已知直线y=x分别与x轴、y轴交于CF两点,点Q是直线CF下方的抛物线上的一个动点,过点Qy轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乘法公式的探究及应用.

1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);

2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);

3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达).

查看答案和解析>>

同步练习册答案