精英家教网 > 初中数学 > 题目详情
如图,在等边△中,,当直角三角板角的顶点上移动时,斜边始终经过边的中点,设直角三角板的另一直角边相交于点E.设,那么之间的函数图象大致是(   )

B.

试题分析:根据等边三角形的性质得BD=2,PC=4-x,∠B=∠C=60°,由于∠MPN=60°,易得∠DPB=∠PEC,根据三角形相似的判定方法得到△BPD∽△CEP,利用相似比即可得到y=x(4-x),配方得到y=-(x-2)2+2,然后根据二次函数的性质对各选项进行判断.
∵等边△ABC中,AB=4,BP=x,
∴BD=2,PC=4-x,∠B=∠C=60°,
∵∠MPN=60°,
∴∠DPB+∠EPC=120°,
∵∠EPC+∠PEC=120°,
∴∠DPB=∠PEC,
∴△BPD∽△CEP,
,即
∴y=x(4-x)=-(x-2)2+2,(0≤x≤4).
故选B.
考点: 动点问题的函数图象.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,等腰中,,D是BC上一点,且.

(1)求证:
(2)若,,求BC的长;
(3)若,求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图所示,如果你的位置在点A,你能看到后面那座高大的建筑物吗?为什么?

(2)如果两楼之间相距MN=m,两楼的高各为10m和30m,则当你至少与M楼相距多少m时,才能看到后面的N楼?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是矩形,且DE⊥CF.则       (填“<”或“=”或“>”);
(2)如图2,若四边形ABCD是平行四边形,试探究:
当∠B与∠EGC满足什么关系时,使得=成立?并证明你的结论;
(3)如图3,若BA="BC=" 3,DA="DC=" 4,∠BAD= 90°,DE⊥CF.则的值为        

图1                     图2                     图3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直角△ABC中,∠C=90°,AB=2,sinB=,点P为边BC上一动点,PD∥AB,PD交AC于点D,连结AP.

(1)求的长;
(2)设的长为的面积为.当为何值时,最大并求出最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图:在△ABC中,点D、E分别在AB、AC上,∠ADE=∠C,且AD∶AC=2∶3,那么DE∶BC等于(   )

A.3∶1      B.1∶3            C.3∶4     D.2∶3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在Rt△ABC中,∠C=90°,BC=3,AC=4,点D在斜边AB上,且满足DC2=DA·DB;则DB=     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△和△中,,为线段上一点,且
求证:

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

△ABC与△DEF是位似比为1:3的位似图形,若,则△DEF的面积为          .

查看答案和解析>>

同步练习册答案