精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠B=∠C=30°,AD⊥BC,点O是AD的中点,过O点的直线MN分别交线段AB和AC于点M,N,若AM:MB=3:5,则AN:NC的值是______.
如图,∵∠B=∠C=30°,
∴∠BAC=180°-30°×2=120°,
∵AD⊥BC,
∴∠BAD=∠CAD=
1
2
∠BAC=
1
2
×120°=60°(等腰三角形三线合一),
过点O作OEAC交AB于E,作OFAB交AC于F,
则∠AOE=∠CAD=60°,∠AOF=∠BAD=60°,
∴△AOE和△AOF都是等边三角形,
∴AE=AE=AO,
∵AM:MB=3:5,
∴AM=3k,MB=5k,
∴AC=AB=3k+5k=8k,
∵∠B=30°,AD⊥BC,
∴AD=
1
2
AB=
1
2
×8k=4k,
∵点O是AD的中点,
∴AO=
1
2
AD=
1
2
×4k=2k,
∴ME=AM-AE=3k-2k=k,
OE
AN
=
ME
AM

2k
AN
=
k
3k

解得AN=6k,
∴NC=AC-AN=8k-6k=2k,
∴AN:NC=6k:2k=3:1.
故答案为:3:1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________;所作的第n个四边形的周长为_________________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知点C在AB的延长线上,且AB:AC=3:5,则AB:BC=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AD是Rt△ABC的斜边BC上的高线,要使△ACD的面积是△ABC和△ABD面积的比例中项,请你添加一个适当的条件:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在比例尺为1:8000000的“中国政区”地图上,量得甲市与乙市之间的距离是6.5cm,则这两市之间的实际距离为______km.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知ABCDEF,那么下列结论中,正确的是(  )
A.
CD
EF
=
AC
AE
B.
AC
AE
=
BD
DF
C.
AC
BD
=
CE
DF
D.
AC
BD
=
DF
CE

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知线段a、b、c,求作第四比例线段x,下列作图正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

请阅读下面材料,并回答所提出的问题.
三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.
已知:如图,△ABC中,AD是角平分线.
求证:
BD
DC
=
AB
AC

分析:要证
BD
DC
=
AB
AC
,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在三角形相似.现在B、D、C在一直线上,△ABD与△ADC不相似,需要考虑用别的方法换比.在比例式
BD
DC
=
AB
AC
中,AC恰是BD、DC、AB的第四比例项,所以考虑过C作CEAD,交BA的延长线于E,从而得到BD、DC、AB的第四比例项AE,这样,证明
BD
DC
=
AB
AC
就可以转化成证AE=AC.
证明:过C作CEDA,交BA的延长线于E.
CEDA?
∠1=∠E
∠2=∠3
∠1=∠2
?∠E=∠3?AE=AC

CEDA?
BD
DC
=
BA
AE
AE=AC
?
BD
DC
=
AB
AC

(1)上述证明过程中,用到了哪些定理?(写对两个定理即可)
(2)在上述分析、证明过程中,主要用到了下列三种数学思想的哪一种?选出一个填在后面的括号内.[]
①数形结合思想;
②转化思想;
③分类讨论思想.
(3)用三角形内角平分线性质定理解答问题:
已知:如图,△ABC中,AD是角平分线,AB=5cm,AC=4cm,BC=7cm.求BD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在梯形ABCD中ABCD,对角线AC、BD交于点O,若CD=2,AB=5,则S△BOC:S△ADC=______.

查看答案和解析>>

同步练习册答案