【题目】如图,反比例函数的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1,﹣2,一次函数图象与y轴的交于点C,与x轴交于点D.
(1)求一次函数的解析式;
(2)在第三象限的反比例图象上是否存在一个点P,使得S△ODP=2S△OCA?若存在,请求出来P的坐标;若不存在,请说明理由.
【答案】(1)y=x+1;(2)-2<x<0;(3)P(-1,-2).
【解析】试题分析:(1)由点A、B的横坐标分别为1,-2,求得A(1,2),B(-2,-1),由于点A、B在一次函数y=kx+b的图象上,列方程组即可得到结论;
(2)根据图象即可得到结论;
(3)存在,根据一次函数的解析式得到D(-1,0),C(0,-1),设P(m,n),根据S△ODP=2S△OCA,列方程即可得到结论.
试题解析:(1)∵点A、B的横坐标分别为1,-2,
∴y=2,或y=-1,
∴A(1,2),B(-2,-1),
∵点A、B在一次函数y=kx+b的图象上,
∴,
∴,
∴一次函数的解析式为:y=x+1;
(2)由图象得知:y<-1时,写出x的取值范围是-2<x<0;
(3)存在,
对于y=x+1,当y=0时,x=-1,当x=0时,y=1,
∴D(-1,0),C(0,1),
设P(m,n),
∵S△ODP=2S△OCA,
∴×1(-n)=2××1×1,
∴n=-2,
∵点P在反比例图象上,
∴m=-1,
∴P(-1,-2).
科目:初中数学 来源: 题型:
【题目】如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016湖北襄阳第25题)
如图,已知点A的坐标为(-2,0),直线y=-+3与x轴,y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A,B,C三点.
(1)请直接写出B,C两点的坐标,抛物线的解析式及顶点D的坐标;
(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F若四边形DEFP为平行四边形,求点P的坐标;
(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N点.Q从点B出发,以每秒l个单位长度的速度沿线段BA向点A运动,运动时间为t(秒).当t(秒)为何值时,存在QMN为等腰直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,以点C为圆心,5cm为半径的⊙C与边AB的位置关系是( ).
A.外离
B.相切
C.相交
D.相离
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法错误的是( )
A. 必然发生的事件发生的概率为1
B. 不可能发生的事件发生的概率为0
C. 随机事件发生的概率大于0且小于1
D. 概率很小的事件不可能发生
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在平面直角坐标系xoy中,直线y=2x+4与y轴交于A点,与x轴交于B点,抛物线C1:y=-x+bx+c过A、B两点,与x轴另一交点为C。
(1)(3分)求抛物线解析式及C点坐标。
(2)(4分)向右平移抛物线C1,使平移后的抛物线C2恰好经过△ABC的外心,抛物线C1、C2相交于点D,求四边形AOCD的面积。
(3)(5分)已知抛物线C2的顶点为M,设P为抛物线C1对称轴上一点,Q为抛物线C1上一点,是否存在以点M、Q、P、B为顶点的四边形为平行四边形,若存在,直接写出P点坐标,不存在,请说明理由。
图(1) 图(2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com