精英家教网 > 初中数学 > 题目详情
如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.
(1)AD是⊙O的切线吗?为什么?
(2)若OD⊥AB,BC=5,求⊙O的半径.
分析:(1)理解OA,根据圆周角定理求出∠O,求出∠OAC,即可求出∠OAD=90°,根据切线的判定推出即可.
(2)求出等边三角形OAC,求出AC,即可求出答案.
解答:解:(1)AD是⊙O的切线,
理由如下:连接OA,
∵∠B=30°,
∴∠O=60°,
∵OA=OC,
∴∠OAC=60°,
∵∠CAD=30°,
∴∠OAD=90°,
又∴点A在⊙O 上,
∴AD是⊙O的切线.

(2)∵∠OAC=∠O=60°,
∴∠OCA=60°,
∴△AOC是等边三角形,
∵OD⊥AB,
∴OD垂直平分AB,
∴AC=BC=5,
∴OA=5,
即⊙O的半径为5.
点评:本题考查了等边三角形的性质和判定,垂径定理,圆周角定理,切线的判定的应用,题目比较好,是一道比较典型的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,AD平分∠BAC,交⊙O于点D,过D作⊙O的切线与AC的延长线交于点E.
(1)求证:BC∥DE;
(2)若AB=3,BD=2,求CE的长;
(3)在题设条件下,为使BDEC是平行四边形,△ABC应满足怎样的条件(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•樊城区模拟)如图,已知△ABC内接于⊙O,弦AD交BC于E,过点D的切线MN交直线AB于M,交直线AC于N.
(1)求证:AE•DE=BE•CE;
(2)连接DB,CD,若MN∥BC,试探究BD与CD的数量关系;
(3)在(2)的条件下,已知AB=6,AN=15,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,AE平分∠BAC,且AD⊥BC于点D,连接OA.
求证:∠OAE=∠EAD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,AB=AC,∠A=36°,CD是⊙O的直径,求∠ACD的度数.

查看答案和解析>>

同步练习册答案