【题目】如图,已知点O在直线AB上,将一副直角三角板的直角顶点放在点O处,其中∠OCD=60°,∠OEF=45°.边OC、OE在直线AB上.
(1)如图(1),若CD和EF相交于点G,则∠DGF的度数是______°;
(2)将图(1)中的三角板OCD绕点O顺时针旋转30°至图(2)位置
①若将三角板OEF绕点O顺时针旋转180°,在此过程中,当∠COE=∠EOD=∠DOF时,求∠AOE的度数;
②若将三角板OEF绕点O以每秒4°的速度顺时针旋转180°,与此同时,将三角板OCD绕点O以每秒1°的速度顺时针旋转,当三角板OEF旋转到终点位置时,三角板OCD也停止旋转.设旋转时间为t秒,当OD⊥EF时,求t的值.
【答案】(1)15;(2)①当∠COE=∠EOD=∠DOF时,∠AOE=75°;②当OD⊥EF时,t的值为25.
【解析】
(1)根据三角形外角的性质即可得到结论;
(2)①如图2,根据已知条件求出∠COE=∠EOD=45°,得到∠AOE=∠AOC+∠COE=30°+45°=75°,当∠COE=∠EOD=∠DOF时,求得结论;②根据垂直的定义得到OD⊥EF,得到∠OHE=90,列方程求得结论.
(1)∵∠EFO=45°,∠D=30°,
∴∠DGF=∠EFO-∠D=45°-30°=15°,
故答案为:15;
(2)①如图2,
∵∠COE=∠EOD=∠DOF,∠COE+∠EOD=∠COD,∠COD=90°,
∴∠COE=∠EOD=45°,
∴∠AOE=∠AOC+∠COE=30°+45°=75°,
当∠COE=∠EOD=∠DOF时,∠AOE=75°;
②∵∠AOE=4t°,∠AOC=30°+t°,如图3,
∵OD⊥EF,
∴∠OHE=90,
∵∠E=45°,∠COD=90°,
∴∠COE=45°,
∴∠AOE-∠AOC=∠COE=45°,
即4t-(30+t)=45,
∴t=25,
∴当OD⊥EF时,t的值为25.
科目:初中数学 来源: 题型:
【题目】某一广告墙PQ旁有两根直立的木杆AB和CD , 某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上,
(1)你在图中画出此时的太阳光线CE及木杆AB的影子BF;
(2)若AB=6米,CD=3米 , CD到PQ的距离DQ的长为4米,求此时木杆AB的影长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,D为BC中点,BE、CF与射线AE分别相交于点E、F(射线AE不经过点D).
(1)如图①,当BE∥CF时,连接ED并延长交CF于点H. 求证:四边形BECH是平行四边形;
(2)如图②,当BE⊥AE于点E,CF⊥AE于点F时,分别取AB、AC的中点M、N,连接ME、MD、NF、ND. 求证:∠EMD=∠FND.
图① 图②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为( )
A.12m
B.10m
C.8m
D.7m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某检修小组从A地出发,在东西方向的公路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶,纪录如下(单位:km)
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | 第7次 |
﹣4 | +7 | ﹣9 | +8 | +6 | ﹣5 | ﹣2 |
则收工时距A地多远?在第几次纪录时距A地最远?
A. 2千米 第1次 B. 1千米 第2次
C. 2千米 第4次 D. 1千米 第5次
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的个数为( )
①﹣a一定是负数;②一个有理数不是整数就是分数;③任何一个有理数的平方都是正数;④倒数等于它本身的数是±1;⑤绝对值等于它本身的数是0;⑥任何一个有理数的绝对值都是正数
A. 0 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择其中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为()
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB=4,点O是线段AB上的点,点C,D是线段OA,OB的中点,小明很轻松地求得CD=2.
(1)小明在反思过程中突发奇想:若点O运动到线段AB的延长线上,则原有的结论“CD=2”是否仍然成立呢?请帮小明画出图形分析,并说明理由.
(2)当点O运动到直线AB外时,结论“CD=2”是否还成立?请利用刻度尺验证你的猜想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com