精英家教网 > 初中数学 > 题目详情
13.A、B两地相距310km,甲车从A地向B地行驶,速度为60km/h.0.5小时后,乙车从B地向A地行驶,速度为80km/h.
如何用一次函数关系刻画该过程?以下是两位同学的设想:
甲:设乙车行驶了x小时,甲车、乙车之间距离为ykm;
乙:设乙车行驶了x小时,甲车、乙车距离A地的路程分别为y1km、y2km.
选择一个合适的设想,解决以下问题:
(1)求乙车出发后几小时和甲车相遇;
(2)利用函数,求何时两车相距70km.

分析 选择甲设想,根据题意得出y关于x的解析式,并求出x的取值范围.(1)将y=0代入解析式中,即可求得结论;(2)两车相距70km,即y=±70,代入解析式即可求得x的值.

解答 解:选择甲同学的设想.
乙车出发时,甲车已行走的路程=60×0.5=30km.
甲车到B地还需要的时间=(310-30)÷60=4$\frac{2}{3}$小时,
乙车到A地需要时间=310÷80=3$\frac{7}{8}$小时.
故0≤x≤3$\frac{7}{8}$.
根据题意可知y=310-30-(60+80)x=-140x+280(0≤x≤3$\frac{7}{8}$).
(1)令y=0,有0=-140x+280,
解得x=2.
故乙车出发后2小时和甲车相遇.
(2)令y=70,有70=-140x+280,
解得x=1.5.
令y=-70,有-70=-140x+280,
解得x=2.5.
故当乙车出发1.5或2.5小时时,两车相距70km.

点评 本题考查了一次函数的应用,解题的关键是:选择甲同学的设想,根据题意得出y关于x的解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.对于正数x,规定f(x)=$\frac{1}{1+x}$,例如f(4)=$\frac{1}{1+4}$=$\frac{1}{5}$,f(2013)+f(2012)+…+f(2)+f(1)+f($\frac{1}{2}$)+…f($\frac{1}{2012}$)+f($\frac{1}{2013}$)=2012$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在直角三角形ABC中,∠ACB=90°,CA=4.点P是半圆弧AC的中点,连接BP,线段BP把图形APCB(指半圆和直角三角形ABC组成的图形)分成两部分,则这两部分面积之差的绝对值是(  )
A.2B.4C.1.5π-2D.$\frac{2π}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知二次函数y=a(x+m)2+k的图象经过点(0,-1),且其顶点坐标为(1,2)
(1)求这个二次函数的表达式;
(2)判断点(3,-9)是否在这个函数的图象上;
(3)若点A(100,y1),B(101,y2)是该函数图象上的两点,试比较y1与y2大小;
(4)如果要通过适当的平移,使得这个函数的图象与x轴只有一个公共点,那么应该怎样平移?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的小正方形,点A、B、C都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).
(1)∠A的正弦值是$\frac{\sqrt{10}}{10}$;
(2)△ABC外接圆的半径是$\sqrt{5}$;
(3)已知△ABC与△DEF(点D、E、F都是格点)成位似图形,则位似中心M的坐标是(3,6);
(4)请在网格图中的空白处画一个格点△A1B1C1,使△A1B1C1∽△ABC,且相似比为$\sqrt{2}$:1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.一座奖杯主视图如图所示,底座上部轮廓是抛物线的一部分,如图,包装奖杯的包装盒是-个长、宽都为a(cm),高为b(cm)的长方体纸盒.长方体纸盒侧面ABCD周长为120cm,长方体表面积为S(cm2).
(1)试用只含a的代数式表示S;
(2)若2a≤b,当a取何值时,S有最大值,求出S的最大值;
(3)图3是把奖杯放入包装盒后的剖面图,FG=a(cm),GH=b(cm),底座宽度较小能放入盒中,以FG所在直线为x轴,以FG中垂线为y轴建立平面直角坐标系,抛物线的解析式为y=mx2+10,a取(2)中使S最大的a的值,若奖杯高度等于包装盒的高度b(cm),抛物线过(8,26).试判断奖杯能否放进包装盒并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图所示,是由一些大小相同的小正方体组成的几何体的主视图和俯视图.
(1)当组成这个几何体的小正方体的个数为8个时,几何体有多种形状.请画出其中两种几何体的左视图.
(2)若组成这个几何体的小正方体的个数为n,请写出n的最小值和最大值.
(3)主视图和俯视图为下面两图的几何体有若干个,请你画出其中一个几何体.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.将抛物线y=2x2-1向下平移3个单位后,所得抛物线的表达式是y=2x2-4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在矩形ABCD中,AB=1,(AD>AB)在BC上取一点E,沿AE将△ABE向上折叠,使点B落在AD上的点F,若四边形EFDC与原矩形相似,则AD的长度为$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

同步练习册答案