精英家教网 > 初中数学 > 题目详情
已知:如图,直角梯形ABCD中,ADBC,∠ABC=90°,以AB为直径的⊙O切DC边于E点,AD=3cm,BC=5cm.求⊙O的面积.

过D作DF⊥BC,交BC于点F,
∵ADBC,∠ABC=90°,
∴∠DAB=∠ABC=90°,又AB为圆O的直径,
∴AD与圆O相切,BC与圆O相切,又DC与圆O相切,
∴AD=ED,CB=CE,
∵AD=3cm,BC=5cm,
∴CD=DE+EC=AD+BC=3+5=8cm,
又∠DAB=∠BFD=∠ABC=90°,
∴四边形ABFD为矩形,
∴FB=AD=3cm,AB=DF,
∴CF=BC-FB=5-3=2cm,
在Rt△CDF中,DC=8cm,CF=2cm,
根据勾股定理得:DF=
DC2-CF2
=2
15

∴圆O的直径AB=DF=2
15
,即半径r=
15

则圆O的面积S=πr2=15πcm2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,AB切⊙O于点B,OA=2
3
,AB=3,弦BCOA,则劣弧BC的弧长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AC是⊙O的直径,∠ACB=60°,连接AB,过A、B两点分别作⊙O的切线,两切线交于点P.若已知⊙O的半径为1,则△PAB的周长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,两同心圆O,大圆的弦AB切小圆于点C,且AB=4,求圆环的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)先化简,再求值:(
2
a-1
-
1
a+1
)÷
1
a+1
,其中a=
2
+1;
(2)请你类比一条直线和一个圆的三种位置关系,在图①、②、③中,分别各画出一条直线,使它与两个圆都相离、都相切、都相交,并在图④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,2.5cm为半径的圆与AB的位置关系是(  )
A.相离B.相交C.相切D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,圆O的圆心在梯形ABCD的底边AB上,并与其它三边均相切,若AB=10,AD=6,则CB长(  )
A.4B.5C.6D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知等边△ABC,以BC为直径作半⊙O交AB于D,DE⊥AC于点E.
(1)求证:DE是半⊙O的切线;
(2)若DE=
3
,求△ABC与半⊙O重合部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,AE=
3

(1)求
EF
的长;
(2)若AD=
3
+5
,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案