精英家教网 > 初中数学 > 题目详情
如图所示,在四边形ABCD中,点E、F是对角线BD上的两点,且BE=FD.
(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;
(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?为什么?
(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,不必写理由.

【答案】分析:(1)连AC,证OB=OD,即可;
(2)四边形ABCD是菱形.证对角线互相垂直平分即可;
(3)因为∠BAD和∠EAF不可能都为90°,所以四边形ABCD不是矩形.
解答:解:连AC,设AC、BD相交于点O;
(1)∵四边形AECF是平行四边形,
∴OE=OF,OA=OC,
∵BE=FD,
∴OB=OD.
∴四边形ABCD是平行四边形.

(2)∵四边形AECF是菱形,
∴OE=OF,OA=OC,AC⊥BD.
∵BE=FD,
∴OB=OD.
∴四边形ABCD是菱形.

(3)四边形ABCD不是矩形.
点评:此题主要考查平行四边形、菱形、矩形的判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图所示,在四边形ABCD中,已知:AB:BC:CD:DA=2:2:3:1,且∠B=90°,求∠DAB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

11、如图所示,在四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,则∠BCD的度数为
110
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在四边形ABCD中,∠BAD=90°,∠B=75°,∠ADC=135°,AB=AD=
2
,E为BC中点,则AE+DE长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在四边形ABCD中,∠A=90°,AB=9,BC=20,CD=25,AD=12,求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案