【题目】如图,已知直线与⊙相离.于点,交⊙于点,,与⊙相切于点,的延长线交直线于点.
(1)求证:;
(2)若,求⊙的半径.
【答案】(1)见解析;(2)⊙O的半径是3.
【解析】
(1)连接OB,根据切线的性质和垂直得出∠OBA=∠OAC=90°,推出∠OBP+∠ABP=90°,∠ACP+∠CPA=90°,求出∠ACP=∠ABC,根据等腰三角形的判定推出即可;
(2)设圆半径为r,则OP=OB=r,PA=5r,根据AB=AC推出,求出r即可.
⑴证明: 连接OB,
∵AB切⊙O于B,OA⊥AC,
∴∠OBA =∠OAC=90°,
∴∠OBP +∠ABP =90°,∠ACP +∠CPA =90°,
∵OP =OB, ∴∠OBP =∠OP B.
∵∠OPB =∠APC, ∴∠ACP =∠ABC,
∴AB =AC.
(2)如上图,设圆半径为,则由得,.
又∵,∴,
∵由(1)知,∴,
解得:,
即⊙O的半径是3.
科目:初中数学 来源: 题型:
【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适,甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用(元)与(千克)之间的函数关系式;
(2)若小明快递的物品超过1千克,则他应选择哪家快递公司更省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】去年4月,过敏体质检测中心等机构开展了青少年形体测评,专家组随机抽查了某市若干名初中生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制成了如下两幅不完整的统计图,请你根据图中所给信息解答些列问题:
(1)请将两幅图补充完整;
(2)如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有 人.
(3)根据统计结果,请你简单谈谈自己的看法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),△ABO绕点B顺时针旋转,得△A′BO′,点A、O旋转后的对应点为A′、O′,记旋转角为α.
(1)如图1,若α=90°,求AA′的长;
(2)在(1)的条件下,边OA上的一点M旋转后的对应点为N,当O′M+BN取得最小值时,在图中画出求点M的位置,并求出点N的坐标。
(3)如图2,在△ABO绕点B顺时针旋转过程中,以AB、A′B为邻边画菱形AB A′E,F是AB的中点,连A′F交BE于P,BP的垂直平分线交AB于K,当α从60°到90°的变化过程中,点K的位置是否变化?若不变,求BK的长并直接写出此变化过程中点P的运动路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“转化”思想求方程的解;
(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,内接于,点为中点,点在上,连接点是的中点,连结.
(1)求证:;
(2)如图2,若平分与交于点延长,与的延长线交于点求证:;
(3)在(2)的条件下,若,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格也相同).若购买个篮球和个足球共需元,购买个篮球和个足球共需元.
(1)购买一个篮球、一个足球各需多少元?
(2)根据该中学的实际情况,需从体育用品商店一次性购买篮球和足球共个.要求购买总金额不能超过元,则最多能购买多少个篮球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD是菱形,BC∥x轴,点B的坐标是(1,),坐标原点O是AB的中点.动圆⊙P的半径是,圆心在x轴上移动,若⊙P在运动过程中只与菱形ABCD的一边相切,则点P的横坐标m 的取值范围是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形的边长为4,一个以点为顶点的角绕点旋转,角的两边分别与边的延长线交于点,连接,设.
(1)如图1,当被对角线平分时,求的值;
(2)求证:与相似;
(3)当的外心在其边上时,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com