精英家教网 > 初中数学 > 题目详情
(2003•上海)如图,已知AC平分∠PAQ,点B、D分别在边AP、AQ上.如果添加一个条件后可推出AB=AD,那么该条件不可以是( )

A.BD⊥AC
B.BC=DC
C.∠ACB=∠ACD
D.∠ABC=∠ADC
【答案】分析:首先分析选项添加的条件,再根据判定方法判断.
解答:解:添加A选项中条件可用ASA判定两个三角形全等;
添加B选项中条件无法判定两个三角形全等;
添加C选项中条件可用ASA判定两个三角形全等;
添加D选项以后是ASA证明三角形全等.
故选B.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《三角形》(06)(解析版) 题型:解答题

(2003•上海)如图,已知:△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE,G是垂足.
求证:(1)G是CE的中点;(2)∠B=2∠BCE.

查看答案和解析>>

科目:初中数学 来源:2007年浙江省温州市乐清中学自主招生考试数学试卷(解析版) 题型:解答题

(2003•上海)如图1所示,在正方形ABCD中,AB=1,是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.
(1)当∠DEF=45°时,求证:点G为线段EF的中点;
(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;
(3)图2所示,将△DEF沿直线EF翻折后得△D1EF,当EF=时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.

查看答案和解析>>

科目:初中数学 来源:2003年上海市中考数学试卷(解析版) 题型:解答题

(2003•上海)如图1所示,在正方形ABCD中,AB=1,是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.
(1)当∠DEF=45°时,求证:点G为线段EF的中点;
(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;
(3)图2所示,将△DEF沿直线EF翻折后得△D1EF,当EF=时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.

查看答案和解析>>

科目:初中数学 来源:2003年上海市中考数学试卷(解析版) 题型:选择题

(2003•上海)如图,已知AC平分∠PAQ,点B、D分别在边AP、AQ上.如果添加一个条件后可推出AB=AD,那么该条件不可以是( )

A.BD⊥AC
B.BC=DC
C.∠ACB=∠ACD
D.∠ABC=∠ADC

查看答案和解析>>

同步练习册答案