【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
【答案】(1)证明见解析(2)2-2
【解析】试题分析:
(1)由旋转的性质易得:AD=AB,AE=AC,∠DAE=∠BAC,结合已知和图形可得AD=AC=AB=AE,∠EAC=∠DAB,再由“SAS”可证△AEC≌△ADB;
(2)由四边形ADFC是菱形可得DF=AC=AB=2,AC∥DF,从而可得∠DBA=∠BAC=45°,再由AD=AB可得∠BDA=∠DBA=45°,就能证明△ADB是等腰直角三角形,由勾股定理可得BD的长,最后由BD-DF可得BF的长.
试题解析:
(1)由旋转的性质得△ABC≌△ADE,且AB=AC,
∴AE=AD=AC=AB,∠BAC=∠DAE,
∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠BAD.
∵在△AEC和△ADB中, ,
∴△AEC≌△ADB(SAS);
(2)∵四边形ADFC是菱形,
∴DF=AC=AB=2,AC∥DF.
∴∠DBA=∠BAC=45°.
由(1)可知AB=AD,
∴∠DBA=∠BDA=45°,
∴△ABD为直角边长为2的等腰直角三角形,
∴BD2=AB2+AD2,即BD2=8,解得BD=,
∴BF=BD-DF=-2.
科目:初中数学 来源: 题型:
【题目】先阅读下面的内容,再解决问题:
例题:若a2﹣2ab+2b2+6b+9=0,求a、b的值.
解:因为a2﹣2ab+2b2+6b+9=0
所以a2﹣2ab+b2+b2+6b+9=0
所以(a﹣b2)+(b+3)2=0
所以a﹣b=0,b+3=0
所以a=﹣3.b=﹣3
根据以上例题解决以下问题,若x2+2y2+2xy﹣4y+4=0,求xy的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知E是平行四边形ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F。
(1)求证:△ABE≌△FCE;
(2)连接AC、BF,若AE=BC,求证:四边形ABFC为矩形;
(3)在(2)条件下,当△ABC再满足一个什么条件时,四边形ABFC为正方形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知一次函数y=3﹣2x的图象经过P1(x1 , y1),P2(x2 , y2)两点,若x1<x2 , 则y1y2 . (填“>”,“<”或“=”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C为⊙O上一点,CD平分∠ACB交⊙O于点D.
(1)AD与BD相等吗?为什么?
(2)若AB=10,AC=6,求CD的长;
(3)若P为⊙O上异于A、B、C、D的点,试探究PA、PD、PB之间的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com