解:(1)∵CB∥OA,
∴∠AOC=180°-∠C=180°-120°=60°,
∵∠FOB=∠AOB,OE平分∠COF,
∴∠EOB=
∠AOC=
×60°=30°;
(2)∠OBC:∠OFC的值不会发生变化,为1:2,
∵CB∥OA,
∴∠OBC=∠BOA,
∵∠FOB=∠AOB,
∴∠BOC=∠FOB,
∴∠OFC=∠OBC+∠FOB=2∠OBC,
∴∠OBC:∠OFC=1:2;
(3)当平行移动AB至∠OBA=45°时,∠OEC=∠OBA.
设∠AOB=x,
∵CB∥AO,
∴∠CBO=∠AOB=x,
∵∠OEC=∠CBO+∠EOB=x+30°,
∠OBA=180°-∠A-∠AOB=180°-120°-x=60°-x,
∴x+30°=60°-x,
∴x=15°,
∴∠OEC=∠OBA=60°-15°=45°.
分析:(1)根据两直线平行,同旁内角互补求出∠AOC,再根据角平分线的定义求出∠EOB=
∠AOC,代入数据即可得解;
(2)根据两直线平行,内错角相等可得∠OBC=∠BOA,从而得到∠OBC=∠FOB,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠OFC=2∠OBC,从而得解;
(3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.
点评:本题考查了平行线的性质,平移的性质,角平分线的定义,三角形的内角和定理,图形较为复杂,熟记性质并准确识图是解题的关键.