精英家教网 > 初中数学 > 题目详情
(2013•荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为(  )
分析:首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.
解答:解:过点A作AD⊥OB于点D,
∵在Rt△AOD中,∠AOB=45°,
∴OD=AD=OA•cos45°=
2
2
×1=
2
2

∴BD=OB-OD=1-
2
2

∴AB=
AD2+BD2
=
2-
2

∵AC是⊙O的直径,
∴∠ABC=90°,AC=2,
∴sinC=
2-
2
2

故选B.
点评:此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•荆门)如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•荆门)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=
3
5
,则DE=
15
4
15
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•荆门)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•荆门)如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.
(1)求证:OF∥BE;
(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(3)延长DC、FP交于点G,连接OE并延长交直线DC与H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案