精英家教网 > 初中数学 > 题目详情
13.如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,求图中阴影部分的面积.(结果保留π)

分析 由AB为圆的切线,得到OC⊥AB,再由OA=OB,利用三线合一得到C为AB中点,且OC为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC的长,利用勾股定理求出AC的长,进而确定出AB的长,求出∠AOB度数,阴影部分面积=三角形AOB面积-扇形AOB面积,求出即可.

解答 解:连接OC,
∵AB与圆O相切,
∴OC⊥AB,
∵OA=OB,
∴∠AOC=∠BOC,∠A=∠B=30°,
在Rt△AOC中,∠A=30°,OA=4,
∴OC=$\frac{1}{2}$OA=2,∠AOC=60°,
∴∠AOB=120°,AC=$\sqrt{O{A}^{2}-O{C}^{2}}$=2$\sqrt{3}$,即AB=2AC=4$\sqrt{3}$,
则S阴影=S△AOB-S扇形=$\frac{1}{2}$×4$\sqrt{3}$×2-$\frac{120π×{2}^{2}}{360}$=4$\sqrt{3}$-$\frac{4π}{3}$.
故图中阴影部分的面积为4$\sqrt{3}$-$\frac{4π}{3}$.

点评 此题考查了切线的性质,含30度直角三角形的性质,以及扇形面积计算,熟练掌握切线的性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.如图,一个含有30°角的直角三角形的两个顶点放在一个长方形的对边上,若∠1=25°,则∠2=115°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知ax=3,ay=2,求a3x+y=54.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知x2-3x+1=0,求:①$x+\frac{1}{x}$的值;②${x^2}+\frac{1}{x^2}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.在如图的△ABC中,正确画出AC边上的高的图形是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请求出小桥PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图双曲线y1=$\frac{k}{x}$(x>0,k>0)与直线y2=x相交于A(1,1),点P为双曲线上一点PS∥y轴,交直线OA于S,PQ⊥y轴,SR⊥y轴,垂足分别为Q,R.
(1)求k的值,并写出y1>y2时x的取值范围;
(2)矩形PQRS能否为正方形,若能求出P点坐标;若不能,请说明理由;
(3)在同一直角坐标系中,二次函数y3=ax2(a>0),当x>4-a时,y3>y2>y1始终成立,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交、地铁上的“低头族”越来越多.某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(问卷调查表如图1所示)并将调查结果绘制成图2和图3所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:

(1)本次接受调查的总人数是5000人.
(2)请将条形统计图补充完整.
(3)在扇形统计图中,观点E的百分比是4%,表示观点B的扇形的圆心角度数为18度.
(4)假如你是该研究机构的一名成员,请根据以上调查结果,就人们如何对待数字化阅读提出你的建议.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.若正比例函数y=k1x的图象与反比例函数y=$\frac{{k}_{2}}{x}$的图象有一个交点坐标是(-2,4)
(1)求这两个函数的表达式;
(2)求这两个函数图象的另一个交点坐标.

查看答案和解析>>

同步练习册答案