精英家教网 > 初中数学 > 题目详情
17.(1)如果一个菱形绕对角线的交点旋转90°后,所得图形与原来的图形重合,那么这个菱形是正方形吗?为什么?
(2)如果一个四边形绕对角线的交点旋转90°后,所得图形与原来的图形重合,那这个四边形是正方形吗?为什么?

分析 (1)根据题意,该四边形的对角线互相垂直平分且相等;
(2)根据题意,该四边形的对角线互相垂直平分且相等.

解答 解:(1)是正方形,
理由:因为菱形对角线互相平分,绕着它的对角线的交点旋转90°,能够与它本身重合,
说明对角线互相垂直平分且相等,所以该四边形是正方形.

(2)是正方形,
理由:因为平行四边形对角线互相平分,绕着它的对角线的交点旋转90°,能够与它本身重合,
说明对角线互相垂直平分且相等,所以该四边形是正方形.

点评 此题考查了菱的性质及与特殊四边形的关系,属基础题.解题时要根据旋转的性质解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.已知等腰三角形的一腰长比底边多1cm,周长为11cm,设这个三角形的一腰长为xcm,底边长为ycm,那么由题意得方程组是(  )
A.$\left\{\begin{array}{l}{2x-y=1}\\{2x-y=11}\end{array}\right.$B.$\left\{\begin{array}{l}{2x-y=1}\\{x+2y=11}\end{array}\right.$C.$\left\{\begin{array}{l}{x-y=1}\\{2x+y=11}\end{array}\right.$D.$\left\{\begin{array}{l}{x-y=1}\\{x+2y=11}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知直线y=kx+b平行于直线y=-3x+5,且与直线y=2x-4交于x轴上,求这个函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.一个多边形各内角都相等,已知其中一个外角为36°,求多边形的边数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)化简求值:5a-2[3a2-(4a2-3a)],其中a=-$\frac{1}{2}$.
(2)先化简,再求值.4x2-xy-($\frac{4}{3}$y2+2x2)+2(3xy-$\frac{1}{3}{y^2}$),其中x=5,y=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.将下列二次函数的一般式用配方法化成顶点式y=a(x-h)2+k的形式,并指出其开口方向、顶点坐标、对称轴.
(1)y=x2-2x+1;
(2)y=2x2-4x+6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图所示,已知BE平分∠ABC,CE平分∠BCD.另有三个条件:①AB∥CD;②∠1+∠2=90°;③∠ABE+∠DCE=∠BEC.以①、②、③其中一个为条件,另一个为结论组成命题,在组成的所有命题中,是真命题的个数有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.比较$\sqrt{2005}$-$\sqrt{2004}$与$\sqrt{2004}$-$\sqrt{2003}$的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC中,∠ACB=90°,CD⊥AB,∠A=30°,AC=3cm,以C为圆心,1.7cm为半径画⊙C,指出点A、B、D与⊙C的位置关系,若要⊙C经过点D,则这个圆的半径为多少?

查看答案和解析>>

同步练习册答案