精英家教网 > 初中数学 > 题目详情
(2012•烟台)(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)
分析:(1)根据正方形的每一个角都是90°可以证明∠AHK=90°,然后利用平角等于180°以及直角三角形的两锐角互余证明∠D1CK=∠HAC,再利用“角角边”证明△ACH和△CD1M全等,根据全等三角形对应边相等可得D1M=CH,同理可证D2N=CH,从而得证;
(2)①过点C作CG⊥AB,垂足为点G,根据三角形的内角和等于180°和平角等于180°证明得到∠H1AC=∠D1CM,然后利用“角角边”证明△ACG和△CD1M全等,根据全等三角形对应边相等可得CG=D1M,同理可证CG=D2N,从而得证;
②结论仍然成立,与①的证明方法相同.
解答:(1)D1M=D2N.
证明:∵∠ACD1=90°,
∴∠ACH+∠D1CK=180°-90°=90°,
∵∠AHK=∠ACD1=90°,
∴∠ACH+∠HAC=90°,
∴∠D1CK=∠HAC,
在△ACH和△CD1M中,
D1CK=∠HAC
∠AHC=∠CMD1=90° 
AC=CD1

∴△ACH≌△CD1M(AAS),
∴D1M=CH,
同理可证D2N=CH,
∴D1M=D2N;


(2)①证明:D1M=D2N成立.
过点C作CG⊥AB,垂足为点G,
∵∠H1AC+∠ACH1+∠AH1C=180°,
∠D1CM+∠ACH1+∠ACD1=180°,
∠AH1C=∠ACD1
∴∠H1AC=∠D1CM,
在△ACG和△CD1M中,
H1AC=∠D1CM
∠AGC=∠CMD1=90°
AC=CD1

∴△ACG≌△CD1M(AAS),
∴CG=D1M,
同理可证CG=D2N,
∴D1M=D2N;

②作图正确.
D1M=D2N还成立.
点评:本题考查了全等三角形的判定与性质,等边三角形的性质,正方形的性质,正多边形的性质,读懂题意,证明得到∠D1CK=∠HAC(或∠H1AC=∠D1CM)是证明三角形全等的关键,也是解决本题的难点与突破口.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•烟台)如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•烟台)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,CF⊥AF,且CF=CE.
(1)求证:CF是⊙O的切线;
(2)若sin∠BAC=
2
5
,求
S△CBD
S△ABC
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•烟台)下列一元二次方程两实数根和为-4的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•烟台)计算:tan45°+
2
cos45°=
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•烟台)如图为2012年伦敦奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为
900
7
900
7
度(不取近似值)

查看答案和解析>>

同步练习册答案