精英家教网 > 初中数学 > 题目详情

【题目】如图,O为正方形ABCD对角线的交点,EAB边上一点,FBC边上一点,EBF的周长等于BC的长.

(1)若AB=12,BE=3,求EF的长;

(2)求∠EOF的度数;

(3)若OE=OF,求的值.

【答案】(1)5;(2)45°;(3)

【解析】

(1)设BF=x,则FC=12-x,根据△EBF的周长等于BC的长得出EF=9-x,Rt△BEF中利用勾股定理求出x的值即可得;(2)在FC上截取FM=FE,连接OM.首先证明∠EOM=90°,再证明△OFE≌△OFM(SSS)即可解决问题;(3)证明∠FOC=∠AEO,结合∠EAO=∠OCF=45°可证△AOE∽△CFO ,推出AE=OC,AO=CF,由AO=CO,可得AE=×CF=CF,进而求解

(1)设BF=x,则FC=BC﹣BF=12﹣x,

BE=3,且BE+BF+EF=BC,

∴EF=9﹣x,

在RtBEF中,由BE2+BF2=EF2可得32+x2=(9﹣x)2

解得:x=4,

则EF=9﹣x=5;

(2)如图,在FC上截取FM=FE,连接OM,

∵CEBF的周长=BE+EF+BF=BC,则BE+EF+BF=BF+FM+MC,

∴BE=MC,

O为正方形中心,

∴OB=OC,∠OBE=∠OCM=45°,

OBE和OCM中,

∴△OBE≌△OCM,

∴∠EOB=∠MOC,OE=OM,

∴∠EOB+∠BOM=∠MOC+∠BOM,即∠EOM=∠BOC=90°,

OFE与OFM中,

∴△OFE≌△OFM(SSS),

∴∠EOF=∠MOF=∠EOM=45°.

(3)证明:由(2)可知:∠EOF=45°,

∴∠AOE+∠FOC=135°,

∵∠EAO=45°,

∴∠AOE+∠AEO=135°,

∴∠FOC=∠AEO,

∵∠EAO=∠OCF=45°,

∴△AOE∽△CFO.

∴AE=OC,AO=CF,

∵AO=CO,

∴AE=×CF=CF,

=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】结论:直角三角形中,的锐角所对的直角边等于斜边的一半.

如图①,我们用几何语言表示如下:

∵在中,

.

你可以利用以上这一结论解决以下问题:

如图②,在中,

1)求的面积;

2)如图③,射线平分,点从点出发,以每秒1个单位的速度沿着射线的方向运动,过点分别作.设点的运动时间为秒,当时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过AB两点分别作直线l的垂线,垂足分别为DE

1)△ACD与△CBE全等吗?说明你的理由.

2)猜想线段ADBEDE之间的关系.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,AB是⊙O的直径,点D是⊙O上一点,点C是弧AD的中点,弦CEAB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=ABC;GP=GD;③点PACQ的外心;④APAD=CQCB.其中正确的是(  )

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC为锐角三角形,ADBC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分别在AB、AC上,其中BC=24cm,高AD=12cm.

(1)求证:AEF∽△ABC:

(2)求正方形EFMN的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形是轴对称图形的是( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市用3000元购进某种干果销售,由于销售状况良好,很快售完.超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果的数量是第一次的2倍还多300千克,如果超市此时按每千克9元的价格出售,当大部分干果售出后,余下的100千克按售价的8折售完.

1)该种干果的第一次进价是每千克多少元?

2)超市第二次销售该种干果盈利了多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2﹣4ax+c经过点A(0,2),顶点B的纵坐标为3.将直线AB向下平移,与x轴、y轴分别交于点C、D,与抛物线的一个交点为P,若D是线段CP的中点,则点P的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次促销活动中,某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成份),并规定:顾客每购买元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得元、元、元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券元.

(1)求每转动一次转盘所获购物券金额的平均数;

(2)如果你在该商场消费元,你会选择转转盘还是直接获得购物券?说明理由.

查看答案和解析>>

同步练习册答案