精英家教网 > 初中数学 > 题目详情
(2013•济宁)如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=
12
x
(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.
(1)求证:线段AB为⊙P的直径;
(2)求△AOB的面积;
(3)如图2,Q是反比例函数y=
12
x
(x>0)图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D.
求证:DO•OC=BO•OA.
分析:(1)∠AOB=90°,由圆周角定理的推论,可以证明AB是⊙P的直径;
(2)将△AOB的面积用含点P坐标的表达式表示出来,容易计算出结果;
(3)对于反比例函数上另外一点Q,⊙Q与坐标轴所形成的△COD的面积,依然不变,与△AOB的面积相等.
解答:(1)证明:∵∠AOB=90°,且∠AOB是⊙P中弦AB所对的圆周角,
∴AB是⊙P的直径.

(2)解:设点P坐标为(m,n)(m>0,n>0),
∵点P是反比例函数y=
12
x
(x>0)图象上一点,∴mn=12.
如答图,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则OM=m,ON=n.
由垂径定理可知,点M为OA中点,点N为OB中点,
∴OA=2OM=2m,OB=2ON=2n,
∴S△AOB=
1
2
BO•OA=
1
2
×2n×2m=2mn=2×12=24.

(3)证明:若点Q为反比例函数y=
12
x
(x>0)图象上异于点P的另一点,
参照(2),同理可得:S△COD=
1
2
DO•CO=24,
则有:S△COD=S△AOB=24,即
1
2
BO•OA=
1
2
DO•CO,
∴DO•OC=BO•OA.
点评:本题考查了反比例函数的图象与性质、圆周角定理、垂径定理等知识,难度不大.试题的核心是考查反比例函数系数的几何意义.对本题而言,若反比例函数系数为k,则可以证明⊙P在坐标轴上所截的两条线段的乘积等于4k;对于另外一点Q所形成的⊙Q,此结论依然成立.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•济宁)如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为
18
18
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•济宁)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.
(1)求证:AF=BE;
(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.

查看答案和解析>>

同步练习册答案