精英家教网 > 初中数学 > 题目详情
如图,AB是半圆O的直径,弦AD,BC相交于点P,且CD,AB的长分别是一元二次方程x2-7x+12=0的两根,则tan∠DPB=   
【答案】分析:连接BD,通过解方程可求得CD、AB的值,进而可利用△ABP∽△CDP得到cos∠BPD的值.设出PD、PB的值,利用勾股定理可表示出BD,进而可求得∠DPB的正切值.
解答:解:连接BD,则∠ADB=90°.
解方程x2-7x+12=0,可得x=3,x=4.
由于AB>CD,所以AB=4,CD=3.
由圆周角定理知:∠C=∠A,∠CDA=∠ABP.
故△CPD∽△APB,得=
设PD=3x,则BP=4x.
在Rt△PBD中,由勾股定理得:BD==x.
故tan∠DPB==
点评:此题主要考查了圆周角定理、相似三角形的判定和性质以及勾股定理、锐角三角函数的定义等知识,正确地构造出直角三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB是半圆O的直径,AC是弦,点P从点B开始沿BA边向点A以1cm/s的速度移动,若AB长为10cm,点O到AC的距离为4cm.
(1)求弦AC的长;
(2)问经过几秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是半圆O的直径,OD是半径,BM切半圆于点B,OC与弦AD平行交BM于点C.
(1)求证:CD是半圆O的切线;
(2)若AB的长为4,点D在半圆O上运动,当AD的长为1时,求点A到直线CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB是半圆O的直径,点D是半圆上一动点,AB=10,AC=8,当△ACD是等腰三角形时,点D到AB的距离是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是半圆O的直径,以OA为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E,则下列结论:①S△O′OE=
1
2
S△AOC2;②点D时AC的中点;③
AC
=2AD;④四边形O′DEO是菱形.其中正确的结论是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,F为垂足,交AC于点C使∠BED=∠C.请判断直线AC与圆O的位置关系,并证明你的结论.

查看答案和解析>>

同步练习册答案