精英家教网 > 初中数学 > 题目详情
某商品的进价为每千克40元,销售单价与月销售量的关系如下表(每千克售价不能高于65元):
销售单价(元)
50
53
56
59
62
65
月销售量(千克)
420
360
300
240
180
120
该商品以每千克50元为售价,在此基础上设每千克的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每千克商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(1)y=-20x2+220x+4200(0<x≤15且x为整数);(2)当售价定为每件55或56元,每个月的利润最大,最大的月利润是4800元.

试题分析:(1)销售利润=每件商品的利润×卖出件数,根据每千克售价不能高于65元可得自变量的取值;
(2)把所得二次函数整理为顶点式,得到相应的x的整数值,即可求得相应的售价和最大的月利润.
试题解析:(1)y=(420-20x)(50+x-40)=-20x2+220x+4200(0<x≤15且x为整数);
(2)y=-20(x-5.5)2+4805.
∵a=-20<0,
∴当x=5.5时,y有最大值4805.
∵0<x≤15且x为整数
∴x=5或6.
当x=5时,50+x=55,y=4800(元),当x=6时,50+x=56,y=4800(元)
∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是4800元.
考点: 1.二次函数的应用;2.二次函数的最值.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与轴交于A、B两点.

(1)求A、B两点的坐标;
(2)若二次函数的图象经过点A、B,试确定此二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,将其绕坐标原点O旋转,则旋转后的抛物线的解析式为(    )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线AB分别交y轴、x 轴于A、B两点,OA=2,,抛物线过A、B两点.

(1)求直线AB和这个抛物线的解析式;
(2)设抛物线的顶点为D,求△ABD的面积
(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t 取何值时,MN的长度l有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:
①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是(  )
A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线交x轴于A点,交y轴于B点,抛物线经过点A、B,交x轴于另一点C,顶点为D.

(1)求抛物线的函数表达式;
(2)求点C、D两点的坐标;
(3)求△ABD的面积;

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为(  )
A.y=(x﹣1)2+3B.y=(x+1)2+3
C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知抛物线,a是常数且,下列选项中可能是它大致图像的是(   )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知二次函数y=ax2+bx+c的图象与y轴正半轴的交点在(0,2)的下方,与轴的交点为(x1,0)和(2,0),且-2<x1<-1,则下列结论正确的是(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案